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ABSTRACT

This report summarizes recent efforts 1o utilize mathematically exact structural models for
structural analysis and control design. The models developed remain exact at all frequencies,
unlike modal models derived from finite element analysis. As a result, control designs based on
these exact models are less susceptible to spillover and instability.

Two types of exact modelling techniques are presented. In the first (called Transform
Element Modelling), the Laplace ransform is utilized to express the equation describing the
dynamics behavior of the structural element in the frequency-domain. This Jeads to mathematically
exact dynamic stiffness matrices, which can be assembled to form an exact global stuctural model,
The TEM methodology is shown 1o be superior to traditional finite element techniques in terms of
both numerical accuracy and computation speed. Based on this approach, an open-loop optimal
control algorithm for small angle slews of flexible structures is developed. The algorithm is
applied to two structural models (a simple mass/appendage structure and the SCOLE structural
model) and succeeds in minimizing the post-maneuver residual kinetic energy. The issue of

closed-loop control using the TEM methodology is also addressed. .

The second modelling technique presented (called the direct approach) deals with the
original pardal differential equations describing the dynanics of the structural elements, expressed
in the time-domain. An extended state-space representation is used 10 develop a distibuted control
theory for simple, one-dimensional systems. The control theory is applied 10 a Bernoulli-Eular
beam, and the feedback gains are determined for various control and deformation penalties. The

Tesults are validated with both discrete stuctural models and analytical results for a beam of infinite
length.

A hybrid congol design, which takes advantage of the favorable properies of both
modelling methods is proposed. In this design, the distributed controller exerts low-authority
control to achieve active damping avgmentation, The TEM-based controlier exents high-authority

control, and is designed to meet the performa e specifications for the structural system.
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()" adjoint operator

8() first variation
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1 INTRODUCTION
This report summarizes the research performed under AFOSR contract 49620-89-C-0082,

"Transform Methods for Precision .Jonlinear Wave Models of Flexible Space Structures.” The
work has focused, primarily, on exact modelling and control of flexible structures. Two modelling
approaches have been developed, each of which has motivated a structural control methodology in
a natural way. The Transform Element Modelling (TEM) approach uses the Laplace transform to
obtain exact, frequency-domain structural element models. An assembly procedure is then used to
create an exact global model. Several open-Joop control algorithms have been developed based on
the TEM models generated. The direct PDE approach deals specifically with the underlying time-
domain partial differental equation cescribing the structural behavior. This methodology leadstoa
distributed control theory, which is analogous 10 traditional state-space control. These two control
algorithms are aliematives to conventonal szuctural control approaches. They are designed to

alleviate the problems associated with conzol-swucture interaction, as deseribed in the next section,

1.1 The Control-Structure Interaction (CSI) Problem

The requirements for many rmlitery and civilian structures applicatons both in space and on
earth call for the vse of large, high performance, lightweight structures. In most cases, the
structural weight must be kept as small s possible 1o avoid excessive transport costs. However,
the flexibility associated with large, Lghtweight structures increases the likelihood of troublesome
structural behavior. The vibrational modes generally begin at low frequency, and are excited by
disturbances. Potential sources of these disturbances include rotzting machinery for tervestrial
applications and atitude control, antenna retargeting and payload shifting for space applications.
Often, the structure, disturbance and control bandwidths are close or overlapping, causing
undesirable vibration to propagate through the strucrure. This situation is described in Fig, 1-1. In
systems with stringent pointing requirements (such as space-based telescopes, interferometers,

lasers, etc.), this can severly degrade performance. Similarly, for sysiems Tequiring pilot isolation

-

-
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or flutter control, performance degradation occurs if unwanted vibration is present. When these
problems arise, some sort of vibraton suppression, either active or passive, is required.

Passive damping techniques alone are usually insufficient to meet performance
requirements, In order to achieve significant modal damping (on the order of 50%, say), an
vnacceptably large mass of damping material must be added to the structure. As a general nule,
passive damping can only provide about 5% to 10% damping for a 5% increase in structural mass
(See, for example, Plunkert (1970)). Consequently, these techniques provide low levels of
vibration suppression and are well suited for addressing steady-state disturbances arising from on-
board or environmental sources, Active control techniques are required for suppressing transient
behavior and lerge, disturbance-induced stuctural responses.

Large, lightweight structures have three basic characteristics which make active control
design difficult. First, the szucnures are difficult to model precisely. The souctural dynamics
mzthematical models obtained from finite element techniques only approximately analyze high
frequency behavior. Typically, only the first few modes are known 10 any degree of accuracy. As
a result, the active conol design must be exremely robust. Unfortunately, robusmess ofien leads
10\ ery consen ative designs which sacrifice performance for stability. Second, these sructures
are modally dense and lightly damped. This makes the closed-loop system extremely sensitive to

parameter v ariations, and ofien leads 10 instability. Third, the underlying dynamics are of infiniie
order As aresult, waditional full-order linezr quadratic regulator (LQR) and linear quadrasic
gaussian (LQG) control designs are not directly applicable 10 these types of systems.

These stuctural characieristics Jead 10 a phenomenon described by Balas (1978) 25
“spilloves,” « J can be explained as follows. In a rypical conwo! design procedure, the

spproxumale Srcte elemnent model is first tuncated 10 include only those modes which are known to
a good degree of accuracy  This becomes the evaluation model, against which various control
Zesgns aoe jadped. Typicaly, the evaluation model is of 100 high an order to achieve an
e W AR SORINNSEE AS 8 Jesuit, 3 reduced order contoller is designed, either directly from

A €k e Yty Bemaen  1988,), or based on 8 further truncation of the evaluation model
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Kosut (1970), Yousuff (1984)). In either case, the action of the controller excites 2l the modes of
the evaluztion model 1o some degree. This is referred to as control spillover. Likewise, the
sensors associated with the contreller also respond to the modes truncated from the evaluation
model, leading to observation spillover, Additional control and observation spiliover occurs when

the reduced order contoller is applied to the actual infinite order structure.

1.2 The Need for Better Models and Control Designs

Currently, the methodology generally employed in most structural control problems is the
High-Authority Controller/Low-Authority Controller (HAC/LAC) approach, described in Gupta
(1981). This is a heirarchical contro! architeciure that addresses many of the issues presented in
the previous section. The design procedure usually involves three distinct procedures. In addition
10 developing the HAC and LAC active control systems, passive damping augmentation is usually
designed. In many cases, prefiltering of command inputs is also required to minimize excitation of
sauctural modes. The modal-based command shaping method developed by Singer (1990) is an
example of the prefiltering concept.

A passive damping treatment is almost always required in the contrpl design of infinite
order, lightly damped systems. The closed-loop system is guaranteed to be unstable for undamped
infinite order systems and any physically realizable controller (i.e., any controller with some
amount of phase lag). This phenomenon is explained in Fig. 1-2. Furthermore, even slighly
damped systems czn be made unstable by increasing the gain of the contoller sufficiently. Asa
result, passive damping is usually required for all high performance structures. For some
applications, adequate passive damping may be inherenty present in the structure, due to material
friction, viscoelasticity, and/or joint hysteresis. High performance applications will likely require
careful tailoring of the passive design in order 10 meet performance goals. By shifting the open-

loop poles of the system into the left half-plane, passive damping has the added oenefit of

desensitizing the controller to modelling errors, thereby increasing robustness. Though attractive
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Fig. 1-2: Collocated rate feedback for an undamped system. The dynamics of the controller,

r~presented here by a pole on the real axis, alter the angles of departure of the higher frequency

loci. Instability fisst occurs in the Jocus with approximate radius corresponding to the radius of the

first order pole of the contoller.
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Fig. 1-3: Collocated rate feedback for a damped system. The passive damping, in this case, is
sufficient to prevent instability, and the damping in the lower modes can be increased significantly,
In an actval LAC design, many actuators and sensors are used, which enables greater damping of

higher modes.
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for practical and theoretical reasons, mass penalties place an upper limit to the amount of passive
damping that can be implemented.

The LAC (also called active damping augmentation) is usually an ad hoc design, as the
primary objective is 1o achieve robust control with a large number of simple controllers (Aubrun
(1980)). Typically, collocated rate feedback is employed. The effect of this form of feedback on
the modes of the stictural system is shown in Fig. 1-3. The main objective of active damping
augmentation is, as the name implies, to increase modal damping significantly, so that the HAC
does not destabilize the systern in the presence of modelling errors.

The primary design objectives are accomplished via the HAC. Ttis usvally a dynamic
compensator of high order, and utilizes information from sensors Jocated throvghout the structure.
Multiple acrvation is 2lso commonplace. These actuators and sensors need not be distinct from
those used in active damping avgmentation, As the name implies, the HAC exerts high gain
control on the structure, moving the closed-loop pole locations considerably.

The current state of the art in HAC/LAC design suffers from several serious deficiencies.
The first and most important is the fidelity of the underlying structural model. The traditional finite
element modelling approach is incapable of recovering the high frequency dynamics of the
structure, unless an exwremely fine discretizztion is utilized, which is usually computaGonally
unacceptable. This limits the accuracy of the evaluation model and its utility in compensator
design. Furthermore, modelling of damping mechanisms, such as viscoelasticity, is difficult to
formulate in a finite element environment. The damping is usually assumed to be model, and the

actual values for the damping ratios are determined quite arbitrarily,

Clearly, then, a more accurate structural modelling approach would be exremely beneficial,
It particular, it is desirable to develop a modelling methodology that aveids modal truncation and
spatial discretization altogether. This is the basis for Partial Differential Equation (PDE) modelling
approaches. The equations describing the structure are kept intact, and remain mathemasically

exact at all frequencies. The issue of modelling error is then reduced to knowledge of the physical
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parameters for the system and the actual choice of the mathematical representations of the structural
clements,

Another limitation of the HAC/LAC methodology is in the active damping augmentation,
which is, for the most part, ad koc, Some systematic approaches have been developed, but have
limited zpplicability, For example, MacMartin (1990) describes a method for minimizing the
power imparted to the structure at an interface vsing Heo techniques. However, only the near field
effects are considered. Reflections of the disturbances at other boundaries of the structure are ot
modelled. This represents a worst case design, with the assumption that nothing is known zbout
the stucture except in the immediate vicinity of the controller, This approach is usvally too
conservative for practical applications. Miller (1991) uses a wave propagation approach to design
conwollers that absorb power at structural interfaces. Again, the lack of a far field model resulis in
aconservative design. Funthermore, neither of these designs is applicable to applying control in
the interior of a structurat element. A more systematic LAC design methodology with Jess
conservaiism is clearly needed.

Current methods of designing the high-authority controller are typically overconservative,
as the closed-loop systems designed from the tuncaied model tend 1o be sensitive to parameter
uncentzinty. Typically, only the first few modes are used in the design. The remaining modes are
considered unreliable, and contribate 10 modelling ervor. A Jess conservative design (and therefore
one with benter nominal performance) would arise from an exact structural model, as the modelling
errors are smaller and are more easily characterized.

The problems discussed above suggest that new modelling approaches may lead to new
control design methodologies in a natural way. By using PDE models, mathematically exact
representations of stwuctural systems are availeble. Control designs based on these models will
account for all modes of the structure, so that the design need not be overly conservative. The
achievement of this design methodelogy would significantly enhance the overall performance of

large, flexible structures in the presence of disturbances.
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1.3 Summary of First Year Research

The research conducted in the first year of this program focused on developing exact
structure models that preserve the wave-like characteristics of structural disturbance propagation.
The primary emphasis was placed on developing the TEM methodology and validating it with
several structural evaluation models. Of pardcular concern in the first year were numerical issues
related to the accuracy of the model. For Jow and high frequencies, numerical overflow and
roundoff errors occured when computing structural responses. These issues were resolved by
using low- and high-frequency asymptotic approximations where required. Also developed was
an open-loop, optimal control algorithm for linear and small angle slews of flexible strucrures. The
detzils of these developments can be found in Lupi (1990), but are also presented in Chapters 2
2nd 4 for completeness. The application of the TEM approach to wo-dimensional strucrural
elements was also addressed, In Lupi (1991b), 2 plane stress element was developed that utilized a
frequency-dependant version of the Airy swess function. The results of this study are also

presented in Section 2.4.2.

1.4 Overview of Report -

This repont summarizes developments in structural modeling and control design from the
past year as well as reviewing the previous year s research. Chapter 2 introduces the TEM
methodology and its applications 1o structura] analysis problems. The extension of the TEM
zpproach to multibody systems is zddressed in Chapter 3. Open-Joop control designs, based on
TEM models, are presented in Chapter 4. The extension to closed-loop control is also discussed.
Chapter 5 develops the direct PDE modelling approach for one- and two-dimensional structural
elements, The direct simulation of a simple one-dimensional system is also presented. The direct
PDE modelling approach leads naturally 1o 2 distributed control theory, which is developed in
Chapter 6. The possibility of a hybrid modelling approach for HAC/LAC control designs is

discussed in Chapter 7. Finally, conclusions and recommendations are presented in Chapter 8.
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2 THE TEM MODELLING APPROACH

In this chapter, we introduce the Transform Element Modelling (TEM) method of structural
analysis. This approzch begins with the partial differential equations describing the dynamics of
the individual elements that describe the structure, The Laplace transform is then utilized to
express these equations in the frequency-domain, Exact, frequency-dependant stiffness matrices,
which relate a set of generalized forces to a set of generalized displacements at the element
boundaries, are then derived. These stiffness matrices are then assembled to form a global model,
in a manner similar to the traditional finite ¢lement assembly procedure. The advantages of this
approach are described in Section 2.1, The procedure for converting frequency-domain data back
into the time-domain is described in Section 2.2. The general theory for one-dimensional
¢lements, and some simple representative examples, are presented in Section 2.3, while Section
2.4 applies the TEM methodology to two-dimensional structural element models. The assembly
procedure is descnbed in Section 2.5, and several applications of the TEM approach are presented

in Section 2.6.

2.1 Advantages of the TEM Method -

The TEM approach has several important advaniages over the tradidonal Finite Element
Method (FEM), as measured in terms of numerical accuracy and computationa! efficiency. The
dynamics of the one-dimensional elements that comprise the structure to be analyzed are
represented exactly in the TEM approach, This is made possible by the Laplace mansform
operation, which converts the time-domain parsial differential equation of a structural element into a
frequency-dependant ordinary differential equation. As a result, analytical general solutions to
these equations are available for most common element models, such as Bernoulli-Euler and

Timoshenko beams, and axial and torsional rods. More complicated elements can be handled by

special numerical modelling approaches. This is in marked contrast to FEM modelling, where each !
element is divided into smaller subsections, each of which is constrained io deform with a finite i
number of degrees of freedom, The interpolation functions associated with the deformational ;




T — e < [URPREEUIRESE Y

Pt Py

degrees of freedom satisfy the undeslying differential equation exacily for the static case, but only
approximate the exact solution the dynamic case. Consequently, for dynamics problems, the FEM
analysis can only yield approximate results. Conversely, the TEM approach, which utilizes
frequency-dependent (generally ranscendental) interpolation functions, is mathematically exact at
all frequencies, Furthermore, since only one mathematical element is required for each physical
structural element, the TEM approach is far superior to the FEM methodology in terms of
computational speed.

For two-dimensional structural elements, general exact so!vtions are not available, but the
TEM methodology makes it possible to approximate the solutions in terms of finite series of
displacement functions. Each of these functons satisfies the underlying differential equation in the
imerior of the element exactly, and approximations are made only at the boundaries. A comparison
between the TEM and FEM methods in terms of speed and accuracy for two-dimensional elements
has not yet been artempted.

Another important advantage of the TEM approach is its ability 1o incorporate general linear
viscoelastic damping models in a straightforward manner. Using the correspondance principle, as
described by Hughes (1989), the physical parameter of interest is simply replaced with a
frequency-dependent counterpart. For example, the Voigt damping mechanism is easily expressed

by
EGs) = [1 +G, —(:—]Eo @.1)
v
where E is the modulus of elasticity of the material, Ey s its static value, s is the (generally

complex) frequency, w, is a characteristic frequency, and Gy is an empirically determined

nondimensional parameter. A more general damping mode), suggested by Hughes, is

s +2C WS
2.2
E() =1+ Z { s2+2c,w s+(o? B @2)
j=1
10

1

"



where, for each value of §, 0; is a characteristic scaling factor, «; is 2 characteristic frequency, and
{; is a characteristic damping ratio, all of which are empirically determined. However, the
advantage of the TEM approaca lies in its ability to model damping mechanisms of infinite order,
such as the fractional derivative models discussed by Bagley (1983). Such models require the use
of fractional caleulus techniques when employed in the time domian, but are easily cast in the
frequency-domain as fractional powers of the complex frequency. For example, the square root

demping model is written as

EGs) = [1 + 65\/;—ﬂr~:o (2.3)

where (0 is a characteristic frequency and o, is empirically determined. Thus, since 2l kinear
viscoelastic damping models have frequency-domain representaticrs, any model can be used in the
TEM formuletion.

Yet another advantzge of the TEM zpproach is the ability 10 take derivatives of ime-domain
funcdons. All that is required is multiplicadon of the function by the complex frequency variable.
Similarly, addidonal multiplications by s yield higher order derivatives. Thus, given a set of
frequency-domain data representing a time-domain response, it is a simple'matter of multiplying
the data by the complex frequency before invoking the inverse Laplace transform 16 obtain the

derivative of the response.

2.2 Inverse Laplace transform algorithm
In any frequency-domain modelling approach, it is of paramount importance 10 have the
ability to convert data back into the time-domain in a computationally efficient manner, This is the
basis for many inverse Laplace transform algorithms, such as the method of expansicn by
Laguerre functions as described by Weeks (1966) and Wing (1967). However, the most
straightforward, stable and accurate method for general functions appears to be the numerical ;

approach of Wilcox (1978). Itis this method that has been used exclusively in this research, and it

11 '
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therefors deserves mention here. A detailed comparison of several other approaches may be found
in Davies (1979).

The Laplace transform pair is expressed as

&(s) Jg(t) etdt

g(t) = fﬁjg'(s)e"ds

(2.42,5)

where Cis a closed contour which encloses all the singularities of g(s). If we assume that g(s)
has no poles with real parts greater than o, where o is 2 small positive number, then the integration
contour can be taken 2s the Bromwich contour, which is shown in Fig. 2-1. Furthermore,
assurning that the semicircle part of the contour does not contribute 1o the integral, the inverse

transform reduces to
&) = 3= jé(s) ¢da, s = a+jo 2.3)

Since the path of integration is displaced to the right of the imaginary axis, marginally stable and
slighty unstable functions can be inverted. Because g(t) is assumed o be real-valued, it follows

from Equadion (2.42) that g(s") = g(s)*. As aresult, Equation (2.5) reduces 10
IO 1ls j
g() = e¥Re { 7‘Jg(s)c“""dm} 2.6)

The numerical computation of g{t) involves calculating f;(s) at N evenly-spaced complex

frequencies along the Bromwich contour, as shown in Fig, 2-2, These values are given by

o = (2k+)Aw, k=0,.,N-1 2.7

The algorithm yields 2N values of g(1) at evenly-spaced Sme intervals, given by

tn = 2T, m=0,.,2N1 2.8)

12
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Fig. 2-1: The Bromwich contour vsed in calculating the inverse Laplace transform.
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where the time interval extends from t=0 10 1=T, Wilcox (1978) shows thas, for reciprocity, the

following relationship must hold:

AW =

Hence, Equation (2.6) can be approximated by the midpoint mile as follows:

N1
8(ty) E e¥Re { %Z £ (sp) S+ 12 me12)N }
=

Factoring out constant terms fom within the summation and simplifying yields

N-1
i) = e¥mRe { 2272 ) [5(5) 28] 20 |
k=0

where

7 = J¥N
If we now define gy and g by

o= IOV, o) = e { 222, |

@A

Then Eq. (2.11) becomes

Nel

m = Zg-k zhm
k=0

2.9)

2.10)

(2.11)

(2.13a,b)

(2.14)

For computational efficiency, it is useful 10 write Eq. (2.14) in a form amenable 1o fast Fourier

transform techniques, This is accomplished by separating the time-domain samples into even and

odd sets. Thus,

En = 20 } 150, .y N-1
g = 82n+1

14

(2.15)




and the inverse transform is applied twice, yielding

N-1 N-1
2 = Zg-k W, = Zg'; whka (2.16a,b)
k=0 k=0
where
g = 825, W=2z%= N (2.17a,b)

Thus, given a series of samples, 2(s;.), in the frequency-domain, the algorithm is as
follows: Use Eq. 2.132 to obtain g and Eq. 2.17a to obtzin g. Next, apply the fast Fourier
wansform, 2s described by Cooley (1970), 10 obtain g, and E,,. Upon reordering the data, which
vields g, use Eq. 2.13b to obtain gty,). Wilcox (1978) shows that, as a gencral rule of thumb, it
is best to take a=2%/T. Using this rule, the author has determined the algorithm 1o be accurate 10
0.19 for the first 75% of the simulation for all test functions, with some deterioration occuring
after this ime. This can be overcome by increasing the simulation time stightly and discarding the
later data.

In cases where the dme-domeain response contzins step discontinuides, it is useful to scale
the frequency-domain data by a Gibbs' oscillation suppression factor, given by

" = sin{(Rk+1)7/2N] @.18)
@k+1)7/2N

This has the equivalent effect in the time-domain of passing the signal through  finite-time
integrator with time constant equal 1o the time between samples, as explained by Lanczos (1957).
Consequently, this scaling doss not affect the respense where it is continuous in time, while it
reduces Gibbs' oscillatons considerably at discontinuites (at the expense of slightly increased rise
ume). Fig. 2-3 shows some me-domain responses generated by the inverse Laplace transform
2)gorithm, both with and without the Gibbs suppression factc . The favorable effect of the scaling
is obvious. Thus, a numerically robust inversion algorithm has been presented. This algorithm

has been vsed extensively in this reasearch.

15
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2.3 One-dimensional element models

Ve now proceed to develop the TEM formuladon for one-dimensional clements. The

general equation of motion for a one-dimensional stuctura] element can bz written 2s ‘

kylafv(x,0)) +kev(x) = fyx0), xe [OL], te [000) 2.19)
where v(x,1) 15 2 generalized displacement, £4(x,1) 1s 2 generalized dismbuted forcing function, Ly
is a inezr spatal differential operator of order n, and (') denotes differentiation with respect to
tme. The constants ky and ky are physical parameters related 1o the intenal potendal and kinetic
energy of deformation of the structurzl element, respeciively. They can be thought of 25
generalized stiffness and mass parameters. The boundary conditions are as yet unspecified. The
equagon of motion is such that all s lev ant intemal siates (force resuliants, moments, eic.) can be

obtained via spatal differental operations on v(x,t).

2.3.1 Siiffness mawix formulation

For a one-dimensional element, it is possible 10 obtain an exact, frequency-dependent
stiffness matrix relating generalized boundary forces and displacements. This is possible because
the Laplace transform operation converts the pargal differential equation into an ordinary
differendal equation, w hose solution can be expressed analytically (usually in the form of
transcendental funcdons of the complex frequency). Taking the Laplace wransform of Eq. (2 19)

leads 10
. X - o .
Llwe] + (L 246es) = kl_u [Fa(x.8) + kp vo(x) + Ky svo(x)) (2.20)
where s is the (generally complex-+alued) Laplace varizble, () denotes the transform of a function,
and vo(x) and Vo(x) represent the initial conditions. From this point on, the overber on

ransformed functions will be assumed, 5o as 10 simplify the notation. Also, Je right hand side of

Eg. (2.20) will be lumped into a single function, 'f'd(x,s). in the frequency-domain. This leads to

17
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Lx[v(x.s)]+§-5szv(x,s) = Ty(x,9) .20

We wish to express the solution to the preceeding 2quation in terms of generalized
displacements and forces at the boundaries of the structural element. This facilitates the assembly
of these structural elements into a general structural model, as will be discussed later. Thus, the
general solution is expressed as

L
V(r) = vi(x,$Ta(s) + d{vp(x,z.s) Fa&9 ok .22)

where vi(x,s) is an n-vector of homogeneous solutions 10 Eq. (2.21) and a(s) is an n-vector of
arbitrary constants. The Green's function, vp(x,é,s), corresponds 1o the operator L, + (kp/ky) s2
and satisfies the essential homogeneous boundary conditions at both boundaries.

We must now express the generalized boundary displacements, w(s), and generalized
boundary forces, q(s), in texms of a(s). Since knowledge of v(x,s) implies knowledge of the
entire state throughout the element, these boundary conditions are obtained by simply evaluating
v(x,5) (and its derivatives) 2s given in Eq. (2.22) at the boundaries. This leads to linear

reladonships between the boundary states and the arbimrary constants, which can be expressed as
w(s) = ¥(s)a(s) (2.23)
and

a(s) = ¥(s)a(s) + qq(s) (2.29)

where W(s) and P(s) are n-by-n matrices, and qq(s) is an n-vector arising from the integral term on
the right hand side of Eq. (2.22). Because satisfies vp(x,é.s) satisfies (by construction) the
homogeneous essential boundary conditions, there is no temm in Eq. (2.23) corresponding to q4(s).
Combining Eqgs. (2.23) and (2.24) leads 10 the desired relationship between the boundary forces

and displacements, given by

18




q(s) = K(s) w(s) + qq(s) (2.25)
where K(s) is refesred to as the dynamic stiffness mawix, and is given by
5 ]
K(s) = ¥6) [¥(9)] 2.26)
It should be noted that, at any complex frequency, Eq. (2.25) is mathematically exact. This

is in contrast to traditional finite element stiffness mawices, which are usvally derived from an

a2pproximate solution to the equation of motion describing the dynamics of the structural element.

2.3.2 Interpolation

The exact representation of the structural element is not restricted 10 the boundary forces
and displacements. In additon, the internal states of the element at an arbitrary Jocation can be
computed exacty. This is accomplished by first expressing the n-dimensional internal state vector,

u(x,s), in terms of v(x,s):
Tu(x,8) = Lylv(x,s)) (2.27)
Here, L, is an n-dimensional spatial differential operator vector, and the superscript (f) indicates

that the elements of u(x,s) are e> pressed with respect to an inertial frame. -Making use of Eq.

(2.22), we obtain

Tu(x,s) = O(x,s)a(s) + up(x.s) 2.28)

where the following definitions have been employed:

L
O(x,s) = Ly[vux9)T], uplxs) = 6[ Ly [vpx.£:)] Fa.s) & (2.29)

Using Eq. (2.23) to eliminate a(s) yields

Tuges) = O(x,s) [¥()] " ws) + upx,s) (2.30)

19
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Thus, the internal states are easily expressed in terms of the boundary displacements.

Tt i5 vsvally more desirable to express the internal states in a frame fixed to one of the
boundaries of the structural element. This is useful, for example, if the structure is undergoing 2
rigid motion. Expressing the internal states with respect o a frame fixed to an element boundary
would then indicate the amount of intemal structural deformation only. This change of reference
affects the intemal generalized displacemen:s only, since the internal generzalized forces are
automatically zero for rigid motion. The general linearized relationship between the state vector

expressed in the two frames is given by

u(x,s) = u(x,s) - O(x) w(s) (.31

where u(x,s) is the state vector expressed in the moving frame and ©(x) is an n-by-n merix which

is independant of frequency. Collecting the previous two equations yields

u(x,s) = I'(x,s) w(s) + up(x.s) (2.32)
where
Y1(x,8)T
T =| =09 [¥©)] - 0- 2.33)
Y (%,8)"

A perticular element of the internal stete vector is then given by
u,(x,5) = 7',(x,s)Tw(s) + up (x,5) (2.34)
Thus, once the generalized displacements at the boundaries are known, it is a simple mater to

obtain the intemnal states, Once 2gain, the formulation is exact, and no modal truncation or finite

tlement approximations have been made.




2.3.3 Internal energy formulation

A useful scalar measure of the state of deformation of a flexible element is the total energy
due to deformation. Itis particularly useful in control applications, as it is a quadratic function of
deformation amplitude and is therefore well suited for linear quadratic regulator problems, The
internal energy within a particular suctural element is obtained by integrating the sum of the
potential 2nd kinetic energy densities over the length of the element. This leads to an expression of
the form

L
EW =3 a[ [kuuf,(x,x) + k-rfx%(x,:)] dx (2.35)

where E(1) is the internal energy at dme t, and uy(x,1) and up(x,t) are components of the internal
state vector related to the potential and Jinetc energies, respectively. Note that these components
are now expressed in the ime-domain. In order that the internal energy be independant of rigid
modon, it is imperatve that up(x,1) be expressed with respect 1o one of the boundaries of the
element, as described in the previous section.

The terms uy(x,t) and up(x,1) are ncw expressed as the inverse Laplace transforms of the

corresponding frequency-domain functons. This is accomplished via Eq._ (2.5) and leads w0

EQ) = %Qa[ {ku( fﬁu(x,s)ci”'dw) +x7( J's Br(%,8) ' dw) }dx (2.36)

where

c2m

k(t) = 2—7:-5- (2.37)

We seek an eaact expression for the 1otal energy of deformarion. It is therefore necessary to
replace the squared integrals with double integrals, so that the order of integration with respect to

space and frequency may be reversed. This makes it possible to perform the spatial integration

21

- -

— e

1




——— moe— woma—a e

[ S e B

analytically. Thus, by writing e2ch inverse ransform integral next 1o itself, using different dummy

varjables of integration, and grouping the integrals together, we obtzin

L XY
EQM) = ,%QJ{I(U J JUU(X,Sl)Uu(x,s2)cj(wl+mz)ld0)1dCDz

0 0o

+kp J Jsl S up(x,51) up(x,52) €10 gy, dcoz} dx (2.38)

where
5; = ooy (2.39)
For simplicity, we have assumed that the initia] conditions are zero and that no dismibuted forcing

occurs in the interior of the element. Interchanging the order of the spatial and frequzncy

integradons in Eq. (2.38) yields

E() = 42 ”{kuoj’“uu(x,s,)uu(x,sz)dx

L
+Kr$y 52 d[ up(X,51) u(X,2) dx } K122 4o, deoy (2.40)

We are now zble to express the spatial integrals in terms of the boundary displacements. Makang
use of Eq. (2.34) leads to

L
Oj ui(x,51) uxs2) dx = wisy)T =i(s1,82) W(s2) (2.41)

where

22




L
Silspsy) = d[ ¥i(%,81) %(x,52)T dx (2.42)

Since Yy(x,sy) and y(x,s;) are expressed nalytically, the matrices Zy(sy,52) and Ex(s1,5) can
also be computed exactly at each frequency. Finally, substitutng Eq. (2.41) into Eq. (2.40) yields

EQ) = %‘l j w(s1)T E(s3,59) w(sp) /€1 doo; dug (2.43)
where
Z(s1,59) = kyZy(sy,s2) + kysysaSy(sy,52) (2.449)

Thus, given the boundzry displacements in the frequency-domain, the energy of
deformation is computable via a double integral. For general motions, an analytical solution does
not exist, and E(1) must be computed numerically. The computadon time is reduced by a factor of

two by exploiting the following symmetry properdes of =:

1}

Z(52.51)
Z(s1,52)

= )T
;szlyss._))_ } (2.45b,)
- "2

Using these properdes makes it possible to reduce the integral 1o

E@) = k@) GU [y (s1)T Z(s5,59) w(sy) eXer+o2n
+w(sy)T £(s1,55) w(sp)” K02 doo; doo, (2.46)

In the acwal implementation of this formula, the integrals are replaced with summations, the vpper

Limits are replaced with finite frequencies, and a simple midpoint rule algorithm is invoked.




2.3.4 Axial rod example
We first consider a uniform rod constrained 10 deform axially, as shown in Fig. 2-4. For

this element, the simplest model that describes its dynamic behavior is the wave equation, given by
2 .

. EAa% Vi) + pAVER) = fa(x.1) (2.47)
where v represents the axial deflection of the cross section, A is the cross sectional are, and p and
E are the material density and modulus of elasticity, respectively. Implicit in this model is the
assumpdon that the deformation of the element is uniform across the cross secton. Also,

Poisson’s ratio effects are ignored, The intemal state at any location, X, is therefore completely

characterized by rwo components;
" 1
uxs) = [9] = [E A 53;] v(x,9) (2.49)

Here, F represents the net force resultant within the rod. The generalized boundary forces and

displacements are just these quantities evaluated at x=0 and a=L:

3

_ v _ F-F.s7 _ | AN .

w(s) = [\-(L.s) voqls) = F(L,s)] = [E Aga"\'(l- 9 (2.49a,b)
(L,

The homogeneous solution vector is simply
vigs)T = [P eP], B = \/% $ (2.50)

and the Green's function kemel is

sinh BL-E) .
v.(x,E.8) = 5.53“" pL Snh Px. xs& @2.51)
P B—%sinh B(L-x) x>E&

Equations (2.492,b) and (2.50) can be combined 1o determine the dynamics stiffness matrix, which

is given by
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wy(s)=v(0,s) wa(s)=v(L,s)
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Fig. 2-4: Axial rod model. Deformation is uniform over cross-section.

w(5)=6(0,5) w(s)=6(L,s)

\ =

wy(s)=v(0,8) ws(s)=v(L.s)
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Fig. 2-5; Bemnoulli-Euler beam model. Planar cross sections ;emain planar and perpendicular to

deformed beam axis.
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As expected, the elements of K are transcendental functions of the complex frequency. Also, this
stiffness matrix reduces to the finite element static stiffness matrix for the axial rod in the limit as s

approaches zero. The effects of initial conditions and distributed forcing are computed via

4 = - n?ﬁl—d[ [0 Fatx)dn 2.53)

where the interpolation matrix is given by
R | sinh B(L-x)  sinh Bx 10 c
T6) = GneL [ B cosh B(L-x) B cosh Bx] - [o o] 254

The intemnal energy matrices are quite complex, but they are nonetheless expressible in an
analytical form. The kinetic energy kemel can be expressed as the sum of the following four
matrices:

B LIy 5_1__ [eP1-PL.qg
)

= - T 3z'§2 B2 L 0
Bns) = Ta AG) 3 2[° vty ooy A + [0
Liehikg) o baboyy pebiliyy]
. —-A T z L 5’[6 1] "‘[G DI 2.55
By [ ehigy 0| %)% o o )] (2.55)
while the potential energy kemel is given by
E__[e(ﬁl*ﬁz)l- 1 b_'l_s_(c(ﬁl-ﬁz)l-.n
= 7| PirPe 1-82
Sylspsy) = AIAZ ABY [ -(B1-Ba)L, 1 ﬁ[c_(ﬁhgz”‘_n A {2.56)
1#P2

where the following definitions have been made:
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_ - Bl 1]
AB) = [ L (2.572)

Ai = 2sinh BxL {257b)

Bi=+Egs @.57¢)

Tt 15 clear that, for ey en the simplest of structural element models, the internal energy expressions
become quite complex. However, this is to be expected, as the energy is a quadratic function of
deflection amplirade, and represents an integrated effect over the entire domain of the element.
The preceeding eapressions for the snffness and interpolation matrices are well suited for
numerical computation, provided that the complex frequen.y at which they are evaluated is neither
100 large nor too small in magnitude. For these extreme situations, numerical accuracy and
overflow errors become issues. These problems are readily handled by using asymptotic
zpproximedons (o the siffness and interpolation matrices. The approximations are obtained by
replacing the wigonometric end hyperbolic functions with appropriate series expansions, and

wencating higher order terms.

2 3.5 Bemouili-Euler beam example
For bending elements, the simplest model is the Bernoulli-Euler beam, shown
schemadcally 1n Fig. 2-5. The basic assumptions of the model are that planar cross secsons of the
eam remain planar and normal to the center-line after deformation, and that differensal cross

secuons have negligible rotary inertia. Under these assumptions, the equation of motion becomes

El%\'(X.alA'\"(x.x) = f4x,1) (2.58)

where v is the ransverse deflection, E 2nd p are the modulus of elasticity and density of the
material, respectively, and A and I ere the cross sectional area and moment of inertia, respectively.

Taking the Laplace transform, we obtain
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%V(x.S) -afvixs) = fytxs), at = -%

For this element, the structural state vecior has four elements, given by
1
R
2] | %
IU(X.S) = M((:('.ss) =1 g1 .53.;5 v(x,s)

S(x.$
“ N g2

a3

(2.5%2,b)

(2.60)

where 8 is the rotation of the cross secrion, and M and S are the internal moment and shear

rasultants, respectively. The generalized boundary displacements and forces zre then

s (0.5) 3

v(0.5) 3 . - $(0,s) .E .
VRN 10T I bl RN BYI(5] B3z 09
S ELaL T R VLo q S(L.s) -El'a‘a-\(l. 9
6(L.9). L1 M(L.$) 8323 +§
515";7\-(1..5)

The homogeneous solugon vector contzins four elements as well, and is given by

\'H(x,s)T = [ccx ¢ CX LJax c-jax]
and the Green's function kemel follows as:

£1(8.8) S°(ex) + g2(8,) C(e2)

vo(x ) = 23 (1-chen) x €5
LA £369) S M) + RO C @),
203 (1-chct) x 5

where

519 = - C*od)  +chcos(a(L ) - shs:n{a(l-8)) + ct cosh(a(L-t)) + &t sinh(aL-8))
2288 = $*(e8)  +chsin(@{L-£)) - sh costa(L-2)) + ct sinh(a(L-£)) - st cosh(a.L))
g3(&s) = - C*a(L-t)) + chcos(ct) -shsin(@d) +ctcosh(ad)  + stsinh(ad)
g8y = ST(a(L-3) + chsin{ad)  -shcos(od) +cisizh(ad) - stcosh(ad)

and the following trigonoraetric definidons have been made:

3
El 53 v(0,5)

(2.612,b)

(2 63)

(2.642)
(2.64b)
(2.64¢)
(2.646)




C*(ak) = cosh(a&) + cos(a€) C(al) = cosh(af) - cos(al)
$*(c&) = sinh(ag) + sin{ag)  $(0¥) = sinh{aE) - sin(ag)

(2.652-h)
ch = cosh(aL) ct = cos(al)
sh = sinh(aL) st = sin(aL)
For the beam element, the stiffness marix is four-by-four, and is expressed as
Kg(s) Kgls) -Ks(s) Ks(s)
El | Ko} K9 K5 Ky(s)
KO = 251 K50 K36 Ke) Kel 2.66)
Kis) Ky -Kg(s)  Kq(s)
where
Ky(s) =25 (sh-s1)
Ko(s .—.a‘—s (chst-shct)
K3(s) = =5 (ch- c1)
Ky(s) = 5’5 sh st Q2.672-¢)

Ks(s) = ;’1- (sh + s1)
Kg(s) =2 (ch st + shcr)
A(s) = ;—4(1 -cher)

This stiffness matrdx also reduces to the static, finite element suffness mawix 2s the complex
frequency epproaches zero. The effects of distributed forcing and inidal condidons ase determined
via

a gy(x.s)

El 2% |
qa(s) = Salch) ag;(x.s) fa(x.s) dx (2.68)

£4(x.8)
and the interpolation matrix is most easily expressed by

1x0
T(x,s) = <I’(x.s)[‘i’(5)]'1 : [8 8
000

OSOoOC

] (2.69)

x
1
0
0
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i

where
s oo Jax cdax
oe =] % e ™ et
! Ela2e®* Ela2e'®* -Ela2e/®* -Ela2¢¥%%
Elade®®  Elfe ™ Ela?d™  .jElade?™*
and
apy P2 aps P3
] - | 3 B o
4ol -chet) Gps - JPs apg =P
. jolL j L
ac’al‘ps ;c’“ Py uc’al‘ps Jc)c Ps

In this last equation, the following definitions have been used:

p; = 1-e % ts) ps = 1-ed%l(ch-jsh)
pp = 1-¢%b(ctast) pg = 1- eIk (ch+jsh)
p; = ¢ Lo (ctsty  py = eIOL . (ch-jsh)
ps = e®l.(ctsst) pg = e ol . (ch-jsh)

1]

(2.70)

(2.71)

2.72)

As was the case with the axial rod, the eapressions for the intemnal energy of deformanon

are complex, but nonctheless eapressible analytcally. The potential energy mawix 1s

F(gx) 'r'(gz) -F(gs) -F(,g.:)

= = w22 T| FGBY  FCBY) FGRD FEB3) |y v}

Sulsnsp) = afos Y| rxy Eohy mosy Fasy | YO
-F()B3) -F(aB2) F()B2) F()By)

while the kinetic energy mawix is

FG) F@p FGy FP Li2 00
- o, oT| FB) FG5) F-B) Fe ;

T = Y60"| 53 rgh may m | YOO | B2 00
. i 184) F(:j 0 000
F(383) F(-j3;) F(-182) F(jBy) 6 000

. F*Z(G:; (S((%; g g Flay) Fop) FGag) F(iay)
. -y - G(a,) G(- GG G(- -1
- ¥s) F(jay) GGa:) 00" a%)) (020) Ouzg ("a% Y(s2)

F(-jay) G(-jay) 0 0 0 0 0 0

where
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F(p) = ‘g[cm‘- l] (2.75;
G(p) = %eﬁ‘- +§‘5[1-eﬁ’~]
and
By=ay+a;
Bra=ay-a2
3= U +jdy (2.76)
Ba=ay-jua
4 _ pA 2
it g S

As was the case for the axial rod, high and low frequency asymptotic approimations are
required for the beam element 2s well. These approximations allow efficient numerical

compuiaton of the required quantdes without sacnficing numerical 2ccuracy.

236 HKigh-frequency elements

In many cases, the simple 212} rod and Bemoulli-Euler beam models are insafficient 10
czpure the high frequency bet avior of the souctural system. This is pardcudarly noticable when
znalyzing the wave-hke propzgzdon of energy associated with impulsive disnurbance sources. For
these siuanons, more zccwate syveniral models are required. ’

The simple ax2l rod model presented 1n Section 2.3.4 predicts dispersion-{ree propagaiion
of elasnc waves 2t all frequencies. For rods of circular cross secdon, a benier model 3s available if

a rzdizl degree of freedom s inoduced, 25 shown in Fig. 2-6, This is the basis for the Minclin-

Herrmann axial rod theory, which can be expressed mathemasically by the following system:

32
- a2 (4+2G) g;; vi(x,s) + pals2 vy(z,s) = 224 g; va(x,8) 2.772)
32 9 -
alx3C 50:._2 v(X,8) - [8):;(7.4—0) + pazsz]vg(x.s\ = Jaxﬁll% vi(x.5) (277b)

In these equations, vy and vy ere the axial and radial displacements, respectively, a represents the

radius of the rod, A and G are the Lame constants of the material, and x and x; are empirically
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Fig. 2-6: Mindlin-Berrmann rod model, Two deformational degrees of freedom are allowed.

Poisson's r2tio couples 2xiz] and radial deformation modes.
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Fig. 2-7: Dispersion curves associated with the Mindlin-Herrmann model.
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determined parameters. This model yields the dispersion curves shown in Fig. 2-7, and
reproduces the dispersion characteristics of the rod more accurately than the simple rod model,
The modified stiffness matrix for the Mindin-Herrmann m. del is given in Appendix A.

A more accurate beam model is the Timoshenko bearn, shown in Fig. 2-8. This model
allows for shearing of the cross sections with respect to the center-line of the beam, and zccounts

for rotery inerda. The equation of motion is given by

.Y - 2 .. 285 e
B2 vixn) + pAYx) - pl [1+%];7v(x,z) + 2V = fien)  Q79)

where G is the shear modulus of the material and k is an empirically deiermined correction factor.
The Timoshenko model is czpable of supporting both a shear and a bending mode of propagation,
2s shown in the dispersion curves in Fig. 2-9. This model also places a finite upper limit on the
flexural propagation speed, which is unrealistically unbounded in the Bernoulli-Euler model.

Dezails on the stffness matix for the Timoshenko model are presented in Appendix A.

2.4 Two-dimensional elements

Two dimensional elements are modelled using pardal differential equatons with three
independant variables (two spatizl dimensions and time). Therefore, the n;odelling of two-
¢imension elements using the TEM methodology cannot produce exact results, as was the case for
one-dimensional models. The reason is that the dynamics equation remains a partal differential
equation in two spatial varizbles after the Laplace wansform operation. As a result, there exist an
infinity of homogeneous solutions for any particular element model. To this infinite set, these
corresponds an infinity of points along the boundary (which spans a one-dimensional domain) on
which boundary conditions must be satisfied. Nevertheless, by using a sufficiently Jarge number
of homogeneous solutions and considering only a sufficiently large, but finite, set of boundary
points, an accurate TEM solution is possible. An example of boundary discretization, for the case

of in-planc deformation, is shown in Fig. 2-10. It is conjectured that, for a given amount of
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computationa] capability, this approach yields results superior in accuracy o the waditional FEM

methodology, We consider two two-dimensjonal elements here: a plate bending element and a

Pplane swess element,

2.4.1 Plate bending element
The TEM formulztion for plate elements bears some resemblance 10 previous work by

Kulla (1990). The transformed equation of moton for 2 plate in bending is
DV4v(x,y,5) + ms?v(x,y,s) = 0 (2.79)
where v is the deflection normal 1o the plane of the element, m §s the mass per unit area, and V4 js

the biharmonic operator. Also, D is the bending rigldity, given by

ER3
D=l (2.50)

wheze his the thickness of the plate and v is the Poisson's rzt0 of the material. Note that we have
assumed no diszbuied forcing and zero initial conditions. The homogeneous solution vector 15 of

infinite dimension, with each enzy having the form

v (xyh8) = ¢Onhy @sy
Substiuting this equadon into Eq. (2.79) vields the characteristic equazion
2 2 2 ms? o
[ul +{3‘] +5 =0 (2.82)

Thus, for each compiex-valued ot (or B), there exist four independent homogeneous solutons

corresponding to the four complex-valved B's (or 's) obuzined from the characieristic equation,
To obiain an approaimare plate solution, we must select a finite set of values for « (or B),

A general method of selecting this set has not been developed in this research, From this set, we

obtain a truncated solytion vector, and the approximate expression for the deflection field becomes

V(Y,8) = va(x,y,5)Ta(s) (2.83)
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The probiers has now been reduced 10 Jetermining the coefficient vector, a(s), in terms of the
boundary conditions. A finite set of boundary points on the element 3s thesefore selected. The
totz] number of boundary conditions specified at these points, n, ooust equal the dimension of the
homogeneous solution vector, so that the problem is not underspecified. (Typically, three

boundary conditions are fmposed 21 each point.) The boundary condition constraints ¢an be

written in the form
=19 OIS 1) i= .84
wy(s) = L‘\).[v(x.;,yi,s)] = L[V pO3Y3s)] a0s) i=],...0 (2.842)
=p® , = vy 91 i= 3 84
qi(8) = Dyy[Vxiry p9)] = D[ u(Yps)) als) s i=),...0 (2.84b)

where Lfg is a linear spatial differential operator (independent of 5 relating the appronimazte
(1)
b33

solution, v, 10 the i'th generalized displacement on the boundary, w;. Simularly, Dyy relates v 1o

the comesponding dual generalized force, Q- Grouping Egs. (2.842) and (2.84b) into mewix form

vields
w(s) = ¥(s)als), as) = Y(s)als) (2.852,b)
where )
Wvatcy9]" D190}
¥ : . Yo & : (2.862.)
Lg?["n(xn.yn,s)]T Dg’;?[\'ﬂ(xn,}'n,s)}T

Finally, the dynamic stiffness matrix follows from eliminating a from Egs. (2.852) znd (2.850b)

K(s) = ) [¥)]” @.87)

Qbviously, the choice of boundary points affects the accuracy of the solution, 2nd should
depend on the geometry of the element. Unfortunately, a quantitative relationship between the

boundary point Jocations and the solution accuracy has not yet been developed. However, 2
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seneral rule of thumb is 1o space the boundary points more closely together near comers of the

element, where internal stress gradients are Jarge,

2.4.2 Planc stress element

For plane stress problems, the difficulty lies in expressing the state of deformation in terms
of 2 single scalar function, a5 there are two in-plane deformational degrees of freedom, To remedy
this sitaation, it becomes neces ~¥ 10 derive a frequency-dependant sess function, from which all
internal stresses and both displacements can be determined. This is accomplished by working
directly with the basic plane stress relarions, expressed in the frequency-domain, For linear,

isozopic, plane stress problems, the swess-sirain relatons are

& =5(0x-va) (2 882)
& =1(0,-va,) (2 88b)
By = 35Ty = S¥1,, (2.88¢)

where E\G, and v are the extensional modulys, shear modulus and Poisson’s ratio of the material,

respecively. The cquations of force equilibrium, expressed in the frequency-domain, are

%E‘i-%f‘y‘—"- = pslu, , %}H%ﬁ;! = pshuy (2 89a,b)

where p is the density of the materizl and s is the (generally complex) Leplace variable, To these,

We must 2dd the geomeric relations

3 9 3 o
R ) (2.503.5)
and the compatibility constraint

3%, 3%, 3%
i g =
T < 2,

Substituting Egs, (2.882) and (2 88b) into equation (2.91) yields

(2.91)




9x2

2, 2 2 20
Fox Toy _y (i-‘—’a ¥ a,,,z ) 2(1+v)—-1%’;¥- 2.92)

a2 e

while adding the derivative of Eq. (2.89a) with respect tox 10 ihe derivative of equation (2.89b)

with respect 10 y produces
o2t 32 du
253t (sz 5 ps7(a + —l (2.93)

Eliminating 1y, between the previous two relations results in

3%, d%, o a a au
__93 9O _.._& = 2 y 4
FEIRIFN 32t +32 (1+v)ps ( ay) (2.92)

Substirating Eqs. (2.882), (2.88b), (2.903) and (2.90b) into equation (2.94) yields
32 2o 32, 3% 2 )
3—?—" + 5%, 9—55 + %—)%‘-’ = (1+V) (l-v)% (ox+ Jy) .95

which reduces 10

[V?- . (1-v2)‘%] (ox+0y) =0 (296)

where V2 is the two dimensiona) spatial Laplacian operator. Because ¢, and Oy are independent
variables, we sull need one additional equation, 50 28 10 eniquely identfy Oy and oy The second
equation is obtzined by subtracting the derivative of EQ. (2.89b) with respect 1oy from the

derivatve of Eq. (2.89a) with respect 10 %, yielding

o ps? Ng, o
(m)EE—(cx-oy) =57 ~a—-— (.97
This relation is equivalent 10
a% 3%, 8%, d%

2(1+v)9—— (ox- oy) = V2 (0 Oy) + 57 * 57 +37 5 (2.98)

from which we obtain
52 a8t
[VZ - 2(1+V) 9?_—] (ox-0y) = [- o+ 3;,‘-,] (o, + oy) (2.99)
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Equations (2.96) and (2.99) represent two linear partal differential equations in two
variables (the sum and difference of the normal stresses). This system can be reduced 10 2 single

equation by defining a frequency dependent stress function, @, so that the following relations hold:

(0x+ oy) = [V2- 2049 %] @ 2.1002)
(ox-op) =[- &+ o (2:1000)

Then, in terms of @, Eq. (2.99) is identcally satisfied, while Eq. (2.96) becomes

[vz ] sé][vz ; %]q, =0 (2.101)

where

= A ,_L. = ,.@. = »\/E 2
C = e Cg = o =5 (2.1022,b,¢)

The constants ¢, ¢ and ¢y 2r¢ readily identified as the propagadon velocitie. of compression and
shear waves in a plane and compression waves in a three dimensional medium, respectively. Itis
interesting to note that, under static conditions (s=0), equation (2.101) reduces 10 the familiar
biharmonic equation associated with the Airy swess funcdon. -

It remains to determine the physical entities of interest in terms of @. In the wadidonal
stress funcdon formulation, the stresses are expressed as derivative operators on . In order to
obtain similar differential operator expressions in this development, it is necessary to define a

related funcrion, v, such thai the following relationship holds:

3%y
= -—-—-axay (2.103)
The final form of Eq. (2.]0]) then becomes
a"ay[ i cc][ i Cs] =0 @109

Equations (2.100) and (2.103) can then be used to determine the normal stresses in terms of v.
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32 [a2 s? 32 a2 _52_
= ﬁ;['ay_z - ’5?,]"' Oy = axa) ['5;5 - 2c§]v (2.1052,b)

Now, combining Egs. (2.882), (2.90a) and the derivative of Eq. (2.89a) with respect 10 x Jeads 1o

Py o oy
o = & (ox-voy) -3 (2.106)

Subsutuung Egs. (2.1052) and (2.105b) nto equation (2.106) and integrating with rezpect 10 both

x and y vields

¥ s? st i
Ty = [ St c‘?)VZ - ~c5—c%-]v (2.107)

Thus, Egs. (2.105) and (2.107) are the desired relations between the stresses and v. Furthermore,

making use of Egs. (2.88) and (2 90) leads to

1382 32 s2
% = EaT[g,—z VazT ;;]v (2.1082)
= Laf8r |, 82 s2 :
Y T EN [ax Ve cg]v (2.108b) |

Thus, unlhe the Taditional saess function formulation, this development also eapresses the !

displacements in terms of the frequency dependent funcdon, v.
We are now in a position 10 apply the same methodology as was used for the plate bending

element. Once again, the assumed form of the homogeneous sclution is

v (X, = By | iay (2.109)
where o 2nd B are funcuons of s, Jeads 1o the characteristic equation:

o, [(u,2+ﬁ,2) - g][(a,hﬁﬁ) - 3;—] =0, i=l.n (2.110)

Of the four sulutions to this equaton, two (=0 and B=0) are spurious. The other two determine

the relationship that must hold berween & and P for each basis solution. The rigid body modes are
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accounted for by seting s equal to 2¢r0. As is the case for the plate bending element, the actual

choices for ¢, and B, vary depending oa the geomerry of the element and are not discussed here.

2.5 Assembly Procedure
The assembly of individual elements to form a global stuctural model is performed in a
manner similar to tradidonal FEM techniques. The element equations are first collected into a

large, unreduced matrix equation, given by

H ]

a'® Ko , 0 =" O]

e KA o+ @111
¢ 0 Kollwiod Lo

where the soperscripts identify the individual elements. The geometry of the interconnecdons

between elements is specified by a conneciivity matrix, C, which relates the local boundary

displecements of the elements 10 a set of global displzcements, \\g(s). that define the global model.
wl)

= Cwi(s) (2.112)

W‘\.'(S)

Figure 2-11 presents a simple structural system and the associated connectivity magix. Piche

(1986a) shows that, for small, linear displacements, the following dual relationship holds:

a'e)
S = CT| - 2.113)
q )
Using these connectivity relagons in Eq. (2.111) yields the unreduced system model
q§(s) = KG(s) wa(s) + agy(s) 2.119)

where
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Fig. 2-11: Asserably of simple, four element stucture. Elements 1 and 3 are axjal moacls, and

elements 2 and 4 are beam models. The joint is assumed 1o be massless,
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K§@) = CT[ KN c, qf@=C" : (2.1152,)
0 K e

At this point, if there are any global displacements that are constrained, the y are removed from the

unreduced model. This produces the desired global model, given by

0%) = K%s)wO(s) +q5(s) @.116)

Equation (2.118) represents the global dynamic stiffness matrix for the stuctural model. It
is mathematically exact, and must be calculated at each frequency of interest. To compute the

response of the model 1o various excitations, we must solve for the global displacements. Thus,
-1
v = G [4%9)- 956)]. G = [K%s)] 2.117a,b)

Here, G(s) represents the global wansfer function matrix for the model. If, in addstion, the Jocel
boundary displacements for a particular element are desired, a partition of the connectvity mamix

must be used:
wis) = €} 69 [2%9) - ¢§®] @)
Finaily, the internal si2ies of a pardcular element are available via
uix,s) = ID(x,s) C‘j, G(s) [a(s) - qg(s)] + u;(x.s) (2.119)
In practice, the matix muldplicatons are never performed literally, The connectivity and
unreduced stffness matrices are highly structured, making it possible to write specialized

algorithms for each equation given above, This dramarically increases the overail computation

speed of the assembly process.
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2.6 Applications

This section discusses some of the 2pplications of the TEM modeiling approach. All
applications require global model 25sembly, and, consequently, a general TEM strucrural
modelling code has been developed.

2.6.1 Modal frequencies

In many cases, 2l that is required from a structural model is a set of modal frequencies.
While the TEM methodology provides significandy more information, it is nonetheless poss.ble to
obtzin modal frequencies using an aJgorithm developed by Wittrick (1971). This robust zlgoritim
uses information about the snffness mawix, evaluated at a tial frequency, to determine the number
of modes whose frequencies are below the tial frequency. Also required by the algorithm are the
modal frequencies of the individual elements with all boundary displacements conswrained to z¢ro.
The algorithm is designed for undamped suctures only, and additional root searching techniques
are required in the analysis of damped structures. Even in damped cases, however, the 2lgonthm
provides a reasonable injtial esimaie of the location of the damped modal frequencies. This
algorithm was not implemented in this research, as adequately accurate modal informzuon was

avallable from plots of appropriate transfer funcdons, 25 described below.

2.6.2 Frequency response and transfer functions

The primary advantage of the TEM approach is its ability 10 provide the exact wansfer
function matrix at any frequency of interest. This is obtzined by numerically inverting the dynamuc
stiffness matrix. The suffness mawrix, K(s), represents a matrix of couzplex impedances relating
generalized boundery forces to boundary displacements. Consequently, G(s) is a matrix of
complex admittances, and is often called the dynamic flexibility matrix,

The transfer functions of cantileveled axizl rods and Bemoulli-Euler beams with various
damping models are shown in Fig. 2-12. For the rod, the input is an applied force ¢ n the free end

and the output is the axial deflection at that end. Similarly, for the beam, the input is an applied

45




s B B ewed e

(ap) apmpudey

\
Py
S
o

[]
-
S
o

-40 04

~3004

-$C 0

Oy=0=1, 6,=0,=0.01

Rt

aco

~t8 =06 -0 -2 co 02 s o 1) 10

Frequency (Jog,oHz)

@

00+

]
o
o

(4p) sponudupy

~40 04

=40 0~

| Wy=0g=], 0,=5,=0.01

-6 02 o9 52 04 ) 0
Frequency (log;oHz)
(b)

Fig. 2-12: Transfer functions of simple cantilevered element without damping (—), with Voigt

damping (- - -), and with square root damping (- - -): (a) Axial dp force to arjal tip displacement,

(b) Transverse tp force to transverse tip displacement.
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mansverse force on the free end and the output is the transverse deflection at that end. It shovld be
noted that the 2ccuracy of these transfer funciions extends arbitrarily high in frequency, insofar s
the mathematical models represent the acrual physical system.

In order 10 demonstrate the capabilites and advantages of the TEM methodology, a
reasonably complex structure was analyzed. The Spacecraft COntrol Laboratory
Experiment (SCOLE) model is a three dimensional asymmmetric structure proposed by
NASA 25 a design challenge by Taylor (1986). It consists of a rigid shutle and hexagonal
truss antenna connected by a flexible mast, 2s shown in Fig. 2-13. Previous authors have
treated the antenna as being rigid. In this effort, however, the flexibility of the antenna is
considered. The TEM model thus contzins thineen beam elements (the mast and twelve
antenna elements) and a six degree of freedom rigid mass representing the shunle. In
2ddition 10 the six rigid degrees of freedom, a total of 52 pardal differential equations,
incorporzdng axjal, bending and torsional modes, are modeled. For comparison, the
SCOLE model was also analysed vsing ASTROS, which incorporates a finite element
2lgorithm similar 10 that found in NASTRAN. For the finite element mode), the mast was

ivided into 32 equal elements, and each of the antenna beams was divided into four
lumped elements, Jeading 1o 480 degrees of freedom. )

Figure 2-14 compares the wansfer funcons from a torque applied to the shurle about the
axis of the mast to verious points along the mast and antenna. The TEM and FEM models agree
rather well at low frequencies. However, it is clear that the finite element model becomes
inaccurate beyond the first few modes. What is considerably more striking is the relative
computation tme requred to generate the wansfer functions shown. On a micro-VAX machine, the
TEM znalysis required approximately one hour of CPU time, in contrast with several days of CPU
time for the FEM approach. This remarkable acceleration is due primarily to the reduction of the
total degrees of freedom in the model, which is associated with the lack of spatial discretization of

the beam elements. Since the computation dme associated with matrix inversion is roughly
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?

proportonal 10 the cube of the dimension of the matrix, the reduction in total degrees of freedom

has a profound effect on computaion dme.

2.6.3 Time-domain simulaton

A final applicadon of the TEM approach for structural analysis is in the ime-domain
simulation of structural responses. This is accomplished via the inverse Laplace wansform
algorithm presented in Sec. 2.2, The flexibility matrix is evaluated at a finite set of N frequencies,
and is muldplied by the global force vector, which contains the Laplace transforms of the forcing
functions ey 2uated at those same frequencies. The resulting displacement vectors are then
collected, and the elgorithm generates the tme-domain responses evaluated at a set of 2N points in
tme.

rig. 2-15 compares the ime-domain simulations of a simple axjal rod and a Mindlin-
Hemrmann rod. The dispersive effects of the higher order model are apparent. Likewise, Fig. 2-16
compares the Bernoulli-Euler and Timoshenko beam models. Here, the effect of finite disturbance

propagaton velocity is the primary distincdon between the models.
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3 MULTIBODY TEM FORMULATION

The TEM formulaton described in Chapter 2 provides an exact PDE model of complex
stuctures with small motions, Because the nodz] displacernents are 21l referenced to the inertial
frame, the small deformation assumption for the elastic deformation aleo implies small rigid body
motion of the total structure, To allow larger ranges of motion at articulated joints, one can embed
the element reference frames at the undeformed element location, which may have both rigid body
rotational and wanslational motion. This type of approach has been used in multibody tools such
25 DISCOS, TREETOPS, DADS znd ADAMS. As shown in the followin g secdons, the coupling
of the rigid and elastic degrees of freedom results in a set of integro-partial differential equations.
The formulztion will be derived using a planar example. The eatension 1o three dimensions should

be sgaighforward.

3.1 Mathematical Model
3.1.1 Equations of Motion

Consider a single uniform beam, cantlevered to a rigid mass, as shown in Fig, 3-1. The
beam’s coordinate frame is fixed 10 the rigid mass, which can undergo rigid body motion. For
simplicity, the motion of the system is assumed to be planar. Torques and forces can be applied 1o
eithur end of the beam/mass system. The equations of motion will be derived using Hamlion's
principle.

The vector from the inerdal origin 10 an arbitrary point on the beam is given by

X X+V,
p = [31+] vy*] G.1)
where 21l the vectors are expressed in body coordinates. The velocity of the point is given by
Vy .
b=[ J+[ Vx - OVy ] (3.2)
Vyd Loy + o(x+vy)

where
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and applied forces and torques.
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Vi) LY+ ox
The Kinetic energy for both the rigid mass and the beam can then be written
L
T = sM[VAV2] +%mJ [VZ# 32+ W2+ 29, V- 20vyVy- 20, 0vy

V3 #9724 @2 rv,)7 + 20, Vy #2004V Vy + 2 0lxsv)] dx - (3.4)

where M and I are the mass and inerta, respectvely, of the lumped mass, and m is the mass per
unii length of the beam. The potental energy due to bending and axial extension is given by
L L
U= %EIJ[E‘%V,.(x)]de + %E&of[%vx(x)]zdx (.5)
0

Virtval work due 10 the external Joads is given by

BW = (Fyy-Fy )X # (Fyy-Fyp)BY + [T) - Ty + XFy, - Y(F,-Fip) - (X4L)Fy, )80
+ [YFyy - (LI, - Tz]SV;(LZ -Fpdv @ (36

One can then invoke Hamulton's priciple:

7]
Svy=0 0<xsL
U)Wt = y > =
:{[[5(T U)=8W]at = 0, SXe5Y=56-0 } 1=t3,ty

3.7)
Substirudng the kinetic and potential energies into Eq. (3.7), performing the 2ppropriate variational
differentiation, and collecting the coefficients of 8X, Y, 89, 8vy, and 8vy, one can obtain the
following set of integro-partial differential equarions:

L
q+3mld) b+ 3oLV, +m J xW(x)dx = Ty-Tp-LF, 3.8)
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L

T (M+mL) \"x+mdf Vx(x)dx = Fy-Fy, (3.9)
i

. L

{ 112+ (M#nl) \'r,+m6f Vy()dx = Fy,-Fy, (3.10)
i \ 2

! mVy + miy(s) = EAZv09 G.11)
:{ . . - Fad

i mxa)-l-mVy-l-mv).(x) = -El -5"—4v).(x) (3.12)
- The nonlinear terms have been ignored in the above equations, assuming small rigid body

%‘ velocites and small elastic deformations.

2 3.1.2 Solution for the Integral-Pardal Differental Equadons

Equations (3.8) through (3.10) are integral-differental equations, and Egs. (3.11) and
(3.12) ere partiel differendel equations. The set of equations can be reduced by transforming to the
Lzplace frequency-domain, solving Eqs. (3.11) and (3.12) for vy 2nd vy in terms of @, Vy, and
V)., and then substituting the result into Egs. (3.8) through (3.10).

For axjal extension, Jet us define the anial siate vector in Laplace transform space by
T
\ () = [vx(x) EA ;a; vx(x)] (3.13)

| Equation (3.11) can then be replaced by the axial state equation

Lu,x) = Cuu) +msVyp, (3.19)

which has the following mawix exponential solution:

X

uyx,s) = eCu(0,8) + msV, Jeca(x'é) Gt p, (3.15)

a where
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The integral of v, which is needed in the transformed version of Eq, (3.9), is then found 1o be

L

X Lx
oj vixs)dx = p}'dfcca"dx u,0,8) + pTmsV, 6{ Cabataxp, @17

Similarly, for ransverse bending, et us define the bending state vector in transform space by
) = [vy0 Lvy B vy B v (3.18)
The bending equation is then given by
Luyx) = Cyup®) - [mxso+msVy)py (3.19)

with the exponendal matrix solution

X X
uy(x,s) = Cox up(0,8) - ms J §cC},(x-§) G ps - msVy J cCE(x‘E-) dt p, (3.20)

where
0100 \ 0
3
Cp={ %%, p =13 ps=|8 (3.212,5,¢)
0001 0 1
ms2 0 00,

The two integrals of vy in the Laplace wransform of Egs. (3.8) and (3.10) can then be written a5
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X Lx
d[vy(x,s)dx = p',r 6[ % ax uy(0,s) - p'{msmd[ 6[ §ccb("'§) d&dx p,

Lx
- pTmsV, Jccb("'g)dédx ps (322)
and

L x L x
6‘ xvy(xs)dx = p;r J xeCv% ax uy(0,8) - p'{msw OI X §ccb("'§)d§ dx py

L x
- p'{m sVyd[onch(x'E-) dEdxps  (3.23)

The integral expressions are substituted into Egs. (3.8) through (3.10), and the coefficients
of 59, 5Vy, sVy, s?v,, and s?vy are coilected into a matrix. Equations (3.15) and (3.20) are
evaluated 2t a=L, the Jeft and right sides interchanged, and the cox ficients are again collected into a

matix, @. This vields an equation of motion of the form

s %s)
D |52,(0.8) | = 1(s) (3.24)
s2up(0,s)
where
1) = [06) Vi) V] (3.25)
fs) = [Ty-Ty-LFy, FyeFy FyeFyy uas) up@s) )" (3.26)

Let us now replace the axial states, u,(0,5), and the bending states, uy(0,5), on the left of

Eq. (3.24) by the nodal displacements at the two ends of the beam/mass model. The
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transformation is done by partitioned matrix solution of Eqs. (3.15) and (3.20) for EAV_(0) and
[EI\I;(G) Elv;(())], respectively. Asa result, the axial and bending pardtions of the force vector

are replaced by nodal forces. These nodal forces are equated to the external forces znd torques by

the equations

v, (0) _ [msVeFy,

EA[V;(L) -[ F, ] 3.27)
i [en
vy -ms

EI V?‘-(L) = -.I).,z 1 (328)
b4
v).(L) Fyz

Terms in Eqgs. (3.27) and (3.28) involving s, sV, and sVy are moved to the right hand side,

Finally, the equation of morion becomes

5sw =T (3.29)
where
T . . T "
vl sl V@) sy o v va) (3.30)
. Ty T, )
f = H|Fyy |+ Ho| Fxa {3.31)
F)') ¥2
100 00-s2 000
H={010-520 0000 (3.32)
001 00 05200
<1000 000-52 0
Ho=|0-100-200 0 0 (3.33)
L 0-10 000 0s2
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3.1.3 Connection to Adjacent Elements
Let us now consider the beam/mass model as one element of a larger tuss/frame structure,
as shown in Fig. 3-2. The external forces and torques at the two ends of the beam can be

expressed as the sum of applied forces/torques and constraint forces/torques:

T
7=
l- Fn] = g+ By®dy (3.39)
LFys
T, .
Fra| = g0+ Doo; 3.39)
P
where
1 0 0
By; = 0 €05 8y; -sin 6y; (3.36)
0 sin@; cos ey

The vector g contains zpplied forces/torques, the subscripts (1)) and (g) indicate inboard and
outboard joints, respectively, of the j'th body, the A vectors are the constraint forces/torques at the
joints, By, is 2 matrix of kinematic coefficients which transforms the constrzint forces/torques from
the coorcinates of the inboard body 1o the coordinates of the current body, 6y is the angle at the
joint, and ® is a selection matrix which picks out which degrees of freedom are 10 be constrained at
the joint. Without loss of generality, Eq. (3.36) has arbitrarily assumed that the constraint forces at
the inboard joint are in the inboard bedy's coordinate system. Substtntion of Egs. (3.34) and

(3.35) into Eq. (3.29) give, for the j-th body,

~ ~ T- .
d)j SWj = gj + H]jB’j (DIJ 7»,1- + ; H0j®0j7"0j (337)
where
8j = Hy g+ Hoj 805 (3.39)
60

k

|

!

fl




Example joint connection.

Fig. 3-2
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The summation in Eq. (3.37) s carried out over all of the outboard joints for tree topologies. Note
that, for an end body, there is only an inboard hinge and no outboard hinge, so that the Jast term in
Eq. (3.37) disappears.

The hinge kinematics relate the absolute velocities of adjacent bodies to the reiative

velocities at the adjoining hinge. For the inboard hinge of the j-th body, we have

®y;BE + By 65 = (Bog 01w+ Bogy [I Pwyy (3.39)
where

100
Bo; = [ 0-1 o], (3.40)

-L 0-1%

000001
P=P1000q (3.41)

000010

The marix @ is a selection mawix for the unconstrained degrees of freedom, & is a vector of
rheonomic constraints, Bris a vector of unconstrained relative hinge velocities, and B, is 2 mazix
of Xinemadc cocfficients that relzte body velocites 10 the outboard joint. For the base body (j=1),

the Jast term in Eq. (3.39) disappears, because the base body's inboard body is the inertial origin,

which, by definition, has 2ero velocity,

3.1.4 Recursion Solution for the Total Structure
We now combine the dynamics, represented by Eq. (3.37), and the kinematics, represented

by Eq. (3.39). Let us consider 2n end body (j=¢) and solve the kinematics equaton for v:

Ye = Byt [@y, ﬁlfe+&)]=&I='BO.c-l (I Plw,.] (3.42)

Equation (3.42) is augmented by the nodal velocities and re-written as

I -
We = WeBe + [8]131e'l (1 e - Bo e [T PY W,y (3.43)
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where

By '®;. 0 0
e={ 0 10 (3.442)
0 01
Be = [BY sv@ v,@1 s v v vl (3.44b)

Equation (3.43) expresses the body j velocities in terms of the velocities of its inboard joint and
inboard body.

Substitution of Eq. (3.43) into the dynamics equation, pre-multiplying by ‘}’eT and solving
for P, gives an expression in terms of inboard body velocities and inboard hinge constraint

forces/torques:

= -1 T 1
Be = [\}’Zq’c\ye] WI { [éc + Hy By O, 7&1,] s

s
- ‘De[g]Bre'l (&1 & - Boe [T PIvwe] ) (3.45)

The unknown constraint torques can be solved for by pre-multiplying Eq. (3.39) by C-b,,T and
substitudng Eq. (3.37):

T iTra - 1~ )
Me = JeOy, [Bre 8- 1 By, 019, g, Boe [T P) e (.46)

where
T _[iaT Tl nTa 3 -
Je = ['s'®le [Ble 0] @, Hp, Ble®le] (3.47)

The unconstrained relative joint velocity term has disappeared because éb,e and @y are orthogonal
to each other.

Equations (3.43), (3.45) and (3.46) are the recursion relations for the end body. Given the
velocities of body e-1, one can compute the constraint forces/torques via Eq, (3.46), substitute into

Eq. (3.45) 10 get the relative velocities, and substitute into Eq. (3.43) to get the body velocitics.
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To obtain the recursion for intermediate bodies in the middle of the chain or tree topology,
let us consider the ¢-1 body as the curment body and relate its velocities to its inboard hinge, The
interconnection constraint forces/torques have been defined so that Az, =2g; We can therefore

substitute Eq. (3.46) into Eq, (3.37) with j equal 10 ¢-1, and rearrange to yield
. TX ”
Doy Weul = Zerl +Hied Brea Pt Meat (3.48)

where

- ~ . T T ”
0% = Bur+ Y LHow G T 6L Bocs [17] 649
o]

T s om osTrs . ] -
g1 = ge-l+ZH0c-l & T dp { D&y - L [Br 010, g} (3.50)
o

Equadon (3.50) is now in the same form as for an end body, and the same derivation can be
followed 10 produce a recursion for the -], 25 well as all intermediate bodies. Recall that at the
base body (j=1) the vecior wj,1, which comesponds to the inertial frame, disappears because the
inerdal origin has zero velocity. This gives the inital value for the forward recursion to begin from
the base body 1o the end bodies. The mulibody algorithm thus involves a-backw zrd recursion to
compute the equivalent matrices and vectors, @ and g°, and a forward recursion to compute the

“‘j Veclors.,

3.2 Discussion

The mathematical formulation has been presented for a linearized model. The linearization
has been necessary for the Laplace wansformation to be applied in solving the. PDE models. Ttis
felt that, even though the equations have been linearized, the range of angular motion that can be
simulated has been enlarged when compared to the cartesian-based TEM models. The derivation
was shown for a planar model for ease of presentation. The extension to three dimensional motion

should be straighiforward.
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The current formulation is applicable 10 chain and ee topologies. In order for this

formularion 10 be applied 10 trugses and frames, it must be extended to handle closed 1opological
loops. This type of formulation has been pesformed for modally based dynamic models by Chun
(1991) and can be easily adapted to PDE modsls,

Arbitrasily arge angular motion of the tota] structure, as well 2s articulated joints, requires a
nonlinear model for the comrect description of both the dynamics of the motion and the Kinematcs
at the joints, Furure efforts showld explore the use of perurbation techniques that allow the

Laplace wansform 1o ba used while still including the effects of the nonlinear terms.
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4 CONTROL DESIGN BASED ON TEM MODELS

The exacmess of the TEM formulation makes it possible to achieve remarkzble performance
in open-loop slewing maneuvers of flexible structures. This is the subject of Secton 4.1 of this
chapter. Unforrunately, because the TEM methodology does not immediately yield a state-space
representztion of the stuctual system, traditional state-space control methods are not directly
appliczble in the closed-loop case. (In actuality, no finite representation can exist, as the structural
model is of infinite order.) Methods for achieving closed-loop control solutions without state-

space models are discussed in Section 4.2

4.1 Open-Loop Control

In this secden, we develop an open-loop control algorithm that t2kes advantage of the
quality of the stuctural model avzilable via the TEM methodology. We restrict zttention to finite-
time, linear maneuvers with 2 quadratc cost functional. We also assume that the szucture is

inigally at rest. The desired terminal state is expressed by

Yt) = yg 4.1

where t; is the maneuver time, ¥(t) is 2 vector of variables of interest, and y4 contains the desired
terminal valves of these variables. The elements of y could include, for example, the displacement
znd rotation of 2 rigid mass on the structure, or the relative transverse deflection of a pointon a
flexible member. The available control forces are 2lso collected into a single vestor, Qq(t), of
dimension N¢. These control forces are then a subset of the global generalized forces defined by
the system model. In order that these forces be continuous in time, we must impose the addidonel

constraint

(0 = qt) = 0 4.2)

Also, the quadratic cost functional is given by
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¥
1 [300- vo) Ry [ytg)- va] + %J [qc(t)Tquqc(t) + éc(t)Tﬁqq&c(l)] dt “3)

where Ryy, Roq, 2nd Roq 2re symmezic, positive definite weighting matrices.
We must now express the output vector in tesms of the control vector via the system

dynamics. This is accomplished using the convoluion integrel

t
y@) = ofcy(;.:)qc(z) dt 4.4

where Gy(1) represents the impulse response mamix relating y(5) 1o qc(t). This convolution integral

is calculated efficienty using the inverse Laplace wansform algorithm of Sec. 2.2:

¥@) = L[Gy(s) 4c(9)] @5)

4.1.1 Band-Jimited conrol approximation

By substituting Eq. (4.4) in Eq. (4.3), we observe that the cost functionzl depends on q¢(1)

only. Serdng the first variadon in cost 10 2¢10 therefore yields

‘lf -‘T t{ -
& = [ J Gy(t) () dt- de Ry, JG,.(:rx) 81 61

i
+ J [acRgg8ac + dc(x)Tﬁqqsi;c(x)] g =0 (4.6)

The problem then lies in solving this equation for g(t). Unfortunately, this is not a simple maner,
25 both the control vector and its variation appear within the integrals, However, if the conwol
inputs are band-limited (as is often the case), a numerical solution is easily obtained. Each control
input is first approximated by

4e® = f®Te, i=1uNe @
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where fq(l) is a vector of known basis functions of time (usually sine and cos.inc functons), and G

sy

is a vector of undetermined coefficients comesponding to the i'th control input. The entire control

vector can then be conveniently expressed as

q() = Fgie (4.8)
where the following definitions have been used:

107 ; 0 3
F=| RO yoe=]" (4.93,)

0 X0 N

Using this band-limited 2pproxirnation, the optimal control problem is reduced to determining the

I coefficient vector, ¢. The variations in the control vector are then
| 8qc(t) = Fe)8e, 83.0) = Fy)e (4.102,b)

i and the constraints given by Eq. (4.2) reduce to

Fg@e = Fyltpe = 0 4.11)

Furthermore, the vector of desired outputs is expressed by -

¥(p) = Y(e 4.12)

where Y(1) is the besis function response matrix, and is given by

t

| Y@ = JG,-(z-r) Fy@dt = LGy F()] (4.13)
l 4.1.2 Soludon without minimization
! Grouping Egs. (4.11) and (4.12) yields the matrix equation

Y(y) ¥d
1 [Fq(o)]c =0 4.14)

Faed [0
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1f the nummber of desired outputs and the mumber of wiknown coefficients are such that the 1. wix
in his equation is square, then ¢ is vniquely determined, Typically, however,

there are many
elements in ¢, so that Eq. (4.14) is underdetermined. Conseqrently,

many choices for ¢ will meet
the terminal constraints. We thersfore have some freedom in choosing which parsiculer ¢ 1o use,
Fora given problem, the paricular choice minindzes some predefined cost functional, which
provid:s a meastre of nominal performanes The next two subsections describe wo such cost

functionals,

4.1.3 Minimizzation with point constraints
We first use the cost functiona) given by Eq, (4.3) and adjoin the constraims given by Eq,
(4.11) via two Lagrange multipliers, Ao and 7.(. Taking variations in ¢ vields

8] = [Y(:f)c - ,vd]TRn,,Y(x;) d¢

i
s 6[ [ Fo)TRgqF () +éq(n7§qqf=q(x>] &t} se

+ AP 8e + TR (98¢ + SigFgl0)e + BT ac = o

= 415
leading 10 the foBowing matrix equation: B
W FQOTF™ € 1 ryagTr,.
[FQ(O) D007 |2 | <[00 Bey¥a @.16)
Feo 0 0 Jp 0
where

Y
W - Yo R, ¥ [r ™R F F TR oo F o)
() Ry Yap) + o) RoqFo(t) + F o) RooFoJ dt @.17)
This s a symmetric system, 2nd c2n bs solved using standard linear algebra routines,
A unique advantage of this approach is that it readily accomodates penalties in higher

derivatives of both control effort and Structural deformation, In the frequency-Gomain,
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differentiation merely requires muldplicaton ¢ f xfxc'dét-a by the Laplace transform variable. The
inverse transformation then produces the derivative of the original signal. Higher order derivatives
are obtained by multiplying by higher powers of the complex frequency. Incorporating higher
derivative penzlties in the traditional optimal contro! formulation is considerably more difficult.

Tt should be noted that the only approximation in the entire development involves
expressing the control inputs 1 terms of the basis functions. The dynamics of the entire structure
zre accounted for, since the impulse responses are exact (insofar as the original equations represent
physical relity). Also, the structural deformations are assumed to be small, so that linearization
does not introduce sigmficant errors. As a result, large angle slew maneuvers are not included in
this ¢lass of problems. It is possible, however, to express stuctural deformations with respect to a
nominal condition during a large angle slew, and then linearize about thal-refercncc, as discussed in
the previous Chapter.

In 2n earlier analydcal study by Skear (1984), the open-loop control of 2 rigid mass witha
flexible appendage, shown in Fig. 4-1, was studied. In his work, structural deformation penalies
were not incorporated into the cost function; rather, the terminal conditions were adjoined 1o the
cost functional as congireints. Shaar derived analytical eapressions for impulse responses of the
simple mass/appendage szucture and thus cbtained closed form opdmal cgntrol solutions for the

structure. Though successful for this application, his approach dots not readily generalize for
more complex structures. In contrast, the formulation presented here readily generalizes for
realistic complex structures. Shaar's example, however, is used as a first example to validate the
optimal contro) formulation.

The maneuver involves translating the mass a distance of 10 meters along the axis of the
flexible appendage, bringing it 10 rest with minimal residual energy and post-maneuver dnft after
20 seconds. The first case places terminal penalties on the final position and velocity of the rigid
mass and on a point 4/5 of the length along the flexible appendage. A small penalty is also placed
on control ra.e, and 17 basis functions are used to approximate the cortrol input. The results,

shown in Fig. 4-2, indicate that the terminal conditions are matched, and residual energy is
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Fig. 4-1:  Simple mass/flexible appendage structural model,
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negligible. In the second c.a.sc. the member sﬁfhcss is reduced by a factor of four, so that the
primary modzl frequency of the soucture comesponds approximately with the frequency of the first
basis function of the control input. The results of this case, presented in Fig. 4-3, indicate that the
control input has been zdjusted so that excitation of the primary mode of the swucture is
suppressed. Again, the terminal conditions zre matched, and residual internal energy is negligible.
The second example is the SCOLE structure znalysed in Sec. 2.6.2. The maneuver

presented here consists of a ten second, 0.1 radian rotation about the z-axis of the shuntle. This
maneuver is a purely academic exercise, and is unrelated 10 the mancuver specified in the original
design challenge. For the first case, torque controls directed along the z-axis are placed at either
end of the mast. Due to the asymmetry of the structure, gyroscopic coupling is expected.
Consequendy, roll and pitch torgue controls are also located on the shurtle. The cost of control
effort is equally weighted among the contol inputs. Equal 1erminal magnitude and rate penaities
are applied 1o the roll, pitch and yaw angles of the shurle, as well as the torsional deformation of
the mast at its midpoint and 2t the masyanienna junction.

The results of the first SCOLE slew are shown in Fig. 4-4. Tt is clear that, 2lthough the
shuttle has rotated the prescribed amount, there is a small amount of residual torsional energy inthe
structure. This energy is due primarily to the defonmadon of the antenna a;d mast at the tenminal
dms. Also, the set of controls utilized are incapable of suppressing out-of-plane deflection of the
2ntenna, which is caused by the asymmetry of the structure.

In order to suppress this residual energy, additional controls are placed on the antenna. In-
plane forces are 2 -ailable at the mast/antenna juncrion and direcdy across the anienna. In addidon,
an out-of-plane thruster is placed at the laner location. Furthermore, additional penalties are placed
on antenna deformation. The improvement in the slew response can be seen in Fig. 4-5. Forthis

maneuver, most of the torque is generated by the antenna thrusters across from the mast. In
reality, this distribution of control effort would be unwise, as it would lead to excessive swess in
the mas/znienna junction. Also, as shown in the figure, this trajeciory causes a Jarge amount of

torsionsd deformation of the mast. Ry adjusting the relative weights on the controls and stuctural
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deformation outputs, it is possible 1o converge upon a more realistic trajectory. However, this

control solution provides an adequate demonstration of the formulation presented here.

4.1.4 Minimization of flexible energy
Another method of obtaining an optimal solution consists of minimizing the residual
flexura] energy within the stuctural elements at the terminal dme. This is achieved by expressing

the generalized boundary displacements of the i'th element in terms of the undermined coefficients:

wis) = Cl Gy9) Fy()e = Hi(s)e (4.18)

Making use of Eq. (2.43) then yiclds
i 1 Tri
EN(1) = 3¢ Eje 4.19)
where

2 o0

Ei®) = k) J IHi(sl)T 2i(s1,52) Hi(sg) /©1*920 40y deyy (4.20)

Included in the cost functional are the weighted penaltes on residual energy for a set of Ny flexible
¢lements and weighted penaldes on control effort and control rate. To this we adjoin the desired
terminal conditions and the constraints on the controls at the beginning and end of the maneuver.

The cost functional is thus

'
Nt X . .
= %ri E'ty) + %oj [qc(t)Tquqc(t)+ éc(t)Tquqc(t)] dt
1=

+ AT[y(t)- va] + 20460 + Mt (@.21)

Setting variations in J due to ¢ to zero yields
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W = Zri Elty + J [ F(DTRgqF () +Fq(t)7§quq(l)] dt (4.23)
\ =l

) Again, this system is symmetric, and can be solved with standard linear algebra software
packages.

The minimum residual energy approach was applied to the simple mass/appendage system
stucied in the previous section. Two raanzuvers were performed, both with a prescribed final
displacement of 10 meters afier 20 seconds. In the first maneuver, the desired final velocity of the
rigid mass was zero, while in the second, the final velocity was 1 meter/second. The results of
these maneuvers are shown in Fig.'s 4-6 and 4-7. In ¢ach case, the residual energy is seen to be
negligible.

The same strucrure was vsed to perform rotational maneuvers. In this case, the bending of
the flexible appendage was considered. A 0.1 radian slew with both zero and 1 radian/second
terminal angular velocity were studied. The results, shown in Fig.'s 4-8 and 4-9, indicate that
performance comparable to the axial cases was achieved.

The minimum energy cost functonal leads to system trajectories with far less residual
energy than those obtained via point constraints. Furthermore, minimization of total deformational
energy also avoids the problem of selecting which points to constrain, All that is required is a
relative cost weighting for each flexible element of interest. Howzver, because the calculation of
inxerzal energy involves a double integral, the minimum energy approach requires more
computational effort. The minimum energy cost functional was not applied to the SCOLE

maneuver problem.
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4.2 "Closed-loop control )

The closed-loop control of infinite order systems expressed in the transformed domain is a
considerably more difficult problem. The exact dynamics are available in the frequency-domain
only, mq no finite dimensional state space realization is possible. As a result, full order
techniques, such as LQR and LQG methodologies, are not applicable, However, the control
problem can be posed in a form amenable to frequency-domain design techniques. It is assumed
that, for a given structural model, a set of disturbance forces act at global element junctions, and
performance is measured in terms of some set of global generalized displacements. The control
objectve is then to minimize, in some sense, the transfer function &ogn the set of disturbances,
w{t), to the performance measure, z(t). This is to be accomplished by a finite order controller
which has available as inputs a finite set of measured generalized displacements, y(t), and actson a
finite set of actuators, u(t), located on the structure, The situation is depicted in Fig. 4-10, The

transfer functions from disturbances and control inputs to the performance metric and measured
outputs are easily obtained as partitions of the dynamic flexibility matrix, Note that this control
problem is in the "standard form," which has been studied extensively by francis (1987) and
Doyle (1989) for finite dimensional plants.

For this problem, the transfer functions are partitioned as

G.u(s) G1u(s)
ol =[e=0 ol e 4249)

and the controller is expressed as

u(s) = Ge(s)y(s) (4.25) !
The closed-loop transfer function is then given by

Tol8) = Gul8) + oSG - Gyu($)Ge(5)] ' Gyus) (4.26)
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Fig. 4-10: The prototypical control problem posc’d in the standard form.
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The design objective is then to determine G(s) such that the clo§e§1~loop system is stable and
“meets the performance specifications. . Although general solutions have been obtained for finite
dimensional systems, the situation for infinite dimensional systerns is mu,cvil more complicated. As
aresult; only simple systems have been considered. For example, the coprime factorization
technique is applied to a single totsional element in Piche (1986b). The extension of such an
approach to complex structures would indeed be a significant achievement.
Itis assumed that the controller has finite order, so that it can be physically implc::ncntable.

The n-th order controller has the state-space form
X0 = AXL)+By(®), u) = Cex,() + Doy() (4.27a,b)

which is represented in the frequency domian by

G.(s) = Co(sI-A) 1B, +D, . (4.28)

Tae objective, then, is to find the matrices A, B,, C,, and D, that both stabilize the closed-loop
system and minimize T,,,(s) in some sense. A method of selecting the order of the controller is
also required. The only data available are the partitioned wransfer function matrices, which are
mathematically exact at all frequencies. The optimal solution would then be valid for the exact
mathematical model, rather than some truncation of it. As a result, the modelling error is restricted
to the deviation of the mathematical model from the actual physical structure. This will resultin a

less conservative control design approach and, consequently, enhanced performance.

4.3 Limitations of the TEM Control Design Methodology

Although the control designs based on the TEM methodology have demonstrated
remarkable performance (at least in the open-loop case), it is important to note some limitations of
this approach. First, the control actuation is available only on the boundaries of the structural
elements, For 2 small number of actuators, this may be overcome by dividing each element into

smaller sub-elements at the point of control actuation, If many actuators are employed, however,
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'this dpprodch is clearly riot feasible, Another limitation is the requirement that the initial conditions

*Be zero. Only in this way was it possible to obtain a simpli sxpression for the control solution,

Noizéro initial conditions introduce an extra‘term, gq(s), in‘the dynamic stiffness equation for each
struétural element. In addition to making the optimal control expressions more complex, this term
must be compiited by integrating over the domain of the element, as described in Sec, 2.3.1.
Consequently, the treatment of initial conditions (and distributed forcing, for that marter) increases
the computation time associated with the TEM approach considerably, as a numerical integration is
vequired for each element at each complex frequency of interest.

Some of these limitations can be overcome by working with the original PDE for the
element, expressed in the time-domain. This forms the basis of the direct PDE modelling
approach, which leads naturally to a different type of control theory. The direct approach is the

subject of the next two chapters.

87

S e s 1

Fowew s ¥ dd

[ [ v

b bl Do

. ——




{

[,

— —

s i Bt g wa: ,,
Eoprome Svtmarwat g ey W od

e e A ———

e e

. e - mma -

5 'DIRECT-PDE MODELLING

Al physical systems are distributed in nature. This fact is a consequence of the laws of

vy
Toormors

physics, which always take the form of a set of field equations which must be satisfied over each

=

infinitestimal region in the spatal domain of interest. As a result, any exact model of a physical

system must be of infinite order. Lumped parameter models are, in general, low-frequency

o

approximations to these field equations. Examples include lumped electrical component models

(such as capacitofs, resistors and inductors), rigid body structural idealizations, and finite element

agmmon

models. In this last example, the finite order approximation is achieved by restricting the

r———
S

deformational degrees of freedom of the system rather than employing a low-frequency
approximation directly, but the result is essentatly the same: The model fails to recover the high-
frequency dynamics of the system. In this chapter, we introduce the concept of a distributed,

infinite-order model of a system, which retains the dynamics of the physical system at all

—— ——
h
- [,

frequencies. This approach, hereinafter referred to as the direct PDE modelling approach, is
superior to the TEM approach when forces of a distributed nature act within the spatial domain of
the structural elements. Such forces include aerodynamic and gravitational loads, inerdal forces,

and distributed control actuators.

|

l ‘ Distributed system models can be characterized in either of two forms, The firstis an
integral form, in which the response of the system at a particular time is determined by integrating

i (with respect to time and/or space) the product of the distributed forcing inputs and a Green's

function kemnel. Here, the Green's function relates the response of the system at some arbitrary

l ; point and time to an impulse applied at some other point and time. Thus, this characterization is
global in nature. Given this approach, it is possible to develop, for example, a distributed control

H theory. The work of Brogan (1968) proceeds along these lines. However, the Green's function

E for an arbitrary system is extremely difficult to obtain, Indeed, analytical expressions are only

available for the simplest of cases. The other characterization is differential in nature. Here, partial

differential equatons, describing the local behavior of the system, are used to develop a system

i ' model. This characterization is mush easier to obtain, as the physical laws that describe the system
l 88
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are always local. Consequently, more emphasis has beén placed on developing the differential
approach for éontrol system design. *Breakwell (1981), for example; uses the differential
description to obtain solutiofis to the boundary control of a simple flexible system. The differential

déscription of distributed systems will be used here throughout;:

51  One-dimensional elements

For a structural system undergoing small deformations, the underlying differental
equations are, of course, the equations of elasticity. A completely rigorous and exact linear
structural model must therefore account for general three-dimensional deformation, However, for
long, slender structural elements, the deformation is primarily a function of position along the
element. The variation in deformation with respect to the other two directions can usually be
expressed in terms ;f the deformation along the length of the element. Therefore, only one spatial
coordinate is needed to describe the dynamics. This is the basis for the axial rod and Bernoulli-
Euler beam models discussed in Chapter 2, While these idealizations fail to hold at extremely high
frequencies, their ranges of validity are much greater than those of finite-order representations,

such as finite element models.

5.1.1 General Formulation
We will restrict our attention to one-dimensional, linear, time-invariant distributed systems.

Such systems can be written in the form
x(x,t) = L, (x)x(x,) + By(xju(x,t) + Dy(x)n(x,t), xe[0,1], te[0,0) ;.

where x is the state vector,  is the distributed control input, and n is the distributed disturbance
input, In contrast with lumped-parameter state space models, these vectors exhibit both spatial and
temporal dependance. Also, Ly, B, and Dy are linear (possibly spatially varying) matrix
operators. Note that the spatial domain he.s been normatized to unity, The boundary conditions are

assumed to be homogeneous, and are expressed as
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x(0,0) = x(1,t) = 0, te[0,) (5.2)

The entire development presented here applies to modelling of systems with homogeneous
boundary conditions only. Itis therefore assumed that no control or disturbance forces are applied

at the boundaries of the system. Finally, the initial conditions are expressed as

x(0) = xo(x), x€[0,1] O 63)

5.1.2 Bernoulli-Euler Beam Example

One of the simplest examples of a one-dimensional distributed parameter system is a
Bemoulli-Euler beam. A diagram of the physical system is shown in Fig. 5-1. The requirement
that the boundary conditions for the mathematical model be homogeneous corresponds to pinned-
pinned boundary conditions for the beam, as will be shown in the next subsection. In addition to
casting the equation of motion of the beam in the form given by Eq. (5.1), the following
subsections describe a method for simulating the response of the beam system to various control

and disturbance forces.

5.1.2.1 Normalization of Equations of Motion

In dimensional form, the beam dynamics are described by

2 2 2
%[El(x)iivd(xd.td)] + m(x)g?vd(xd,td) = fy(xgtd)» xg€[OL] (5.4)
d d d

where x4 and t are the dimensionalized spatial and temporal variables, respectively, v4 is the
transverse deflection, fy is the applied distributed control and/or disturbance force, L is the beam
length, EI(x) is the bending stiffness, and m(x) is the beam mass per unit length. To this equation

we must add the boundary conditions

2 2
val0t) = %ivd(o,:d) = vg(ltg) = %vd(l,zg =0 (5.5)
d d
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Fig. 5-1: Bemoulli-Euler beam models: (a) Unifcrm beam, (b) Tapered beam.
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and the initial conditions

Va(xa0) = vou(xd) s 3 vd(xd,O) = Vod(xd) (5.6a,b)

We now introduce nondimensional independant variables according to

X4 - EI(0)
=7, t=y Y (5.72,b)
and the normalized deflection and distributed force as
3
vx0) = Fvalcatd) s 160 = fgfaxetd (5.82,5)

We can also parametrize the bending stiffness and mass per unit length by

nx) = B2 py =

oL (5.93,b)

m(x)

where 1) and B are nondimensional functions. These normalizations lead to the following

nondimensional form of the equation of motion

axz["(") VX, :)] ﬁ(x)a.,v(x 0 = £ = fux0 + f(00 (5.10)

Here, f,, and £, represent the normalized distributed control and disturbance forces, respectively.
To obtain the state space representation of the dynamics, we define the state vector and control and

disturbance scalars by

2
10 v
x(xt) = ) x ,oulxt) = fix,0, nlxy = fHx,0 (5.11a-c)
37 v(x)

The first and second elements of x correspond to the normalized curvature and velocity of the
bending motion, respectively., These choices for the state vector components ensure the well-
posedness of the system model, as explained by Richtmyer (1957). Equation (5.5), which is a
consequence of the pinned-pinned boundary condidons, ensures that x(0,t)=x(1,t)=0 for all values

of t. The equation of motion then takes the form of Eq. (5.1), with
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L = [ 291 % b0 = 4w = [15] (5.128,0)

5.1.2.2 The Case of Curvature Actuation

In most active structural control applications, it is difficult to implement lightweight inerdal
force actuators. This is particularly challenging for space-based structures, where stringent
constraints are placed on structural mass. As a result, practical structural control actuators are
usually imbedded within the structure itself, and are capable of producing only relative deformation
between points on the structure, For example, deLuis (1989) demonstrates how an embedded
piezoelectric actuator can be used to induce a locat curvature in the beam. Many such actuators,
placed along the span of a large, beam-like structure will then approximate distributed curvature
actuation.

Ieis thercfo;c useful to develop the model of a beam with a distributed curvature actuator.
Such is the limiting case of a beam with many embedded piezoelectric actuators distibuted along

its span. For this system, the equation of motion is modified to

[n(x) - v(x, :)] 2 a.,v(x 0 = 2mu(x ) (5.13)

where my(x,t) represents the net action of the distributed piezoelectrics. The state vector, X, is

unchanged, as is Ly, but u and by must be modified to

" 2
ue) = mye). b = [ 1% (5.14a,)

5.1.2.3 Numerical Simulation Using Laplace Transform
Given the beam dynamics model, there remains the problem of actually simulating the
response of the beam to control and distufbancc forces. Various methodologies exist to achieve

this end. Atone extreme, the dynamics equation is discretized in both space and titne and then
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integrated forward in time. ‘This constitutes a partial differential equation with mixed boundary and
initial condidions. Although this method is widely used, it requires rather fine discretizations in
both the temporal and spatial dimensions to achieve accurate results, and errors tend to accumulate
intdme. At the other extreme, one can Laplace-wransform the equation into the s-domain and search
for analytic solutions. However, due to the distributed nature of the control and/or disturbance
forces, this transformation results in an integro-partial differential equation rather than a simple
ordinary differential equation (as would te the case for boundary forcing only). Due to the
generality of the distributed forces, 2 general analytical solution is not available.

In order to achieve accurate solutions with relatively coarse discretizations, a third
aliernative is proposed. The dynamics equation is Laplace-transformed, resulting in the above
mentioned integro-partial differential equation. At each desired complex frequency, a finite
differencing schem; is used to solve for the displacement field. The data from a set of frequencies
is collected, and the numerically robust inverse Laplace transform algorithm described in Section
2.2 s used to convert the data back into the time-domain. Because the transformed equation
represents a boundary value problem, it is anticipated that its approximate solution will be more
stable and accurate than the corresponding solution to the mixed problem associated with time-
domain integration. The stability and accuracy of the inverse transform algorithm has already been
demonstrated in Chapters 2 and 3.

The development presented here corresponds to distributed force actuation only, and the
case of distributed curvature 2ctuation is addressed in Appendix B. We first transform Eq. (5.10)

into the frequency-domain:

2 2 . - . . -
a—ax-z-[n (x) 58527"("'5)] +B_(‘?)' [52 V(X,8) - s vo(x) - vo(x)] = fy(x.5) + f(x.s)  (5.15)

The normalized frequency, s, is related to the dimensional frequency, sq, by

4
s = 53\ 2AE (5.16)

94

i
H
h




In this way, we can relate the transform pair v(x,tg) ~ V(x,54) with the pair v(x,3) ~ ¥(x,5). We
now assume that the feedback control law is distributed and linear, and relates the components of

the state vector to the control input by

1
fulxt) = - oj k(xy)Tx(y,0) dy
. .
2
) -oj [kn(x,y)n(y)§7v(y,t> +kz(x.y>§v<y.:>] dy G-17)

In this last equation, kj(x.y) and ka(x,y) represent feedback gain kernels. This type of control law
will arise in the next chapter as the optimal solution to the distributed control problem. Substituting
the Laplace-transformed version of this control law in Eq. (5.15) leads to

1
2 2 . 2 . 2 -
o v(x.s)] +E ) +of [kicn ) 2909 + skaxy) v<y.s)] dy

1
= fo(x,9) + B% [\'/o(x) +5 vo(x)] + J ka(x,¥) vo(y) dy (5.18)
The term involving k; in this equation can be integrated by parts twice so that the Jerivative with

respect to y operates on ky. The boundary term arising from this operation vanishes due to the

homogeneous boundary conditions. By making the following associations

- 2 5
k(x)y,s) = ) [kl(x.y)n(x)] +ska(x,y) (5.192)
f(x,8) = fo(x,9) + fi(x,5) + Fo(x,5) (5.19b)
fitxs) = B-(l;)' [i'o(X) + SVo(x)] (5.19¢)
R 1
fetxis) = [ka(x.) voly) dy (5.199)
0

the dynamics equation reduces to
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1
a%[n(x) :-;zz-i (x.s)] + -gs(%w’/(x,s) + J k(x,y,8) V(y,) dy = £(x,5) (5.20)

A similar result is available for the case of curvature actuation, and can be found in Appendix B.
Equation (5.20) must be solved numericaily for each value of s needed to construct the time
response. To do so requires a discretization of the spatial domain into N uniform subregions, The

boundaries of these subregions are given by

, i=0,.., N (5.21)

2|

X; =

We can now use the values of f(x,s) evaluated at these x; to determine V(x,s) at these same

coordinates. By defining the vectors

s
354
[
»
o
~

- ¥ = (39} 1) = {3xp9)} 6.

and the matrix

K(s) = [k(xpyps)] (5.23)

an approximaton to Eq. (5.20) is easily obtained. The first term is replaced by the finite difference

approximation

2 - -
-a%[n(x)a-a—i-v(x,s)] ~ N*DHD ¥(s) (5.24)

where D is a constant banded marrix of coefficients representing the second derivative operation:

2-2
-1 2 -% 0
-1 2-
= . 1 . (5.25)
0 -1 2-1
L 2
) and H is the discretized representation of n(x):
H = diag [n(x)] (5.26)
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The second term in Eq. (5.20) is trivially approximated by

Bs-(z;)-w'/(x,s) ~ 2B ¥(s) .27
where
B = disg [-5(’—] (5.28)

Finally, the integrai term is replaced with 2 summation:

1
JHxy9ie9ey = froW (529
Collecting terms, the discretized equadon becomes

[N4DHD +52B + K(9)] W9 = o) + 1,9 + 19 (5.30)

Thus, a single matrix inversion is required at each complex frequency. If the frequencies required
for the inverse Laplace oansform are given by
$ = 81 Sy (5.31)

then the solutions of Eq. (5.30) can be grouped according to
V= {3sp) o (s} (5.32)

‘The time-domain responses at each x; are then obtained by applying the inverse transform
algorithm to each row of V.

Figure 5-2 presents the response of a uniform and a linearly tapered beam to a sinusoidal
inital displacement and zero inidal velocity. (The plots display ime and x-coordinate along the
beam as independent variables, with transverse deflection along the vertical axis.) For the uniform
beam, these initial conditions correspond to the second mode of vibration. Consequendy, no other
modes are excited, as can be seen in the figure. For the tapered beam, other modes become

involved, as the individual mode shapes are more complicated. Figure 5-3 displays the simulaton
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results for a uniform beam impacted with a unit transverse impulse at its center-span. The ploton
the left comresponds to a long time scale, and indicates that the resulting motion is predominantiy
composed of a first mode vibration with odd harmonics. The plot on the right, which corresponds
1o a shorter time scale, accentuates the wave-like characteristics of the response. The disturbance,
which begins at the center-span, quickly moves towards the boundaries and reflects. These
reﬂections-evcnmally set up the complex modal motion observed in the long time scale plot, Note
that, for a short ime following the impact, the deflection of the center-span varies as the square-
root of time. This behavior agrees with the beam theory presented by Nowacki (1963), where the
response of a beam of infinite extent is addressed. Note also that the disturbance reaches the
boundaries almost instantly, which is characteristic of the Bernoulli-Euler beam assumption of no
cross secton rotary inertia. This effect is more apparent in Fig, 5-4, where the responses of a
Bemoulli-Euler bca:n (on the left) and a Timoshenko beam (on the right) are compared. The
simuladon of the Timoshenko beam is discussed in Appendix C. For these siruladons, free-free
boundary conditions are assumed, and the impact occurs at a boundary. The effect of rotary intetia
is immediately apparent, and manifests itself as a finite disturbance propagation velocity in the
beam. Also, the reflection of the shear wave p-opagating through the Timoshenko beum can be

seen in the plot on the right of the figure.

5.2 Two-dimensional elements

Many element models require two independant spatial coordinates to specify the domain of
the element. These models include membranes, plates in bending, shells, and plane stress
elements. In all cases, the third spatial dimension is of sufficiently small extentin comparison with
the other two dimensions so that a two-dimensional idealization is reasonably accurate. These

models have the general differential form
Xy = Lex(xy,t) + Buixyt), xye[0,1], te[0,%) (5.33)

Two examples of two-dimensional elements are given below,
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5.2.1. Membrane model
‘The normalized equation of motion of a membrane is given by

V2vxy0) + vyt = f(xy.0) (5.34)

where v represents the normalized deflection, f represents a normalized force per unit area, and V2

is the Laplacian operator. Taking the deflection and its velocity as the state variables:

v{x,y,t)

x(x,y,t) = [ ] u(x.y,) = f{x.y.1) (5.352,b)

v(x,¥,1)
and defining the operators L, and b, by

- L, = [gz 3 , by = [?] (5.36a,b)

leads to the relation given by Eq. (5.33).

5.2,2 Plate model

Another two dimensional element is a plate in bending. Here, the equation of motion is
Vav(xy.D) + Vxyt) = £xy,0) (530

In this case, the following state vector and forcing input definidons are appropriate:

V2v(x,y.t)

x(xy.t) = [ o) ], u(x,y,t) = f(x,y.,) (5.382,b)

The equation of motion then takes the form of Eq. (5.33), with

Le= [% 3], =[] (5.392,)
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52.3 Complexity Issues

Unfortunately, the direcz simulation of two-dimensional clements is considerably more

computationally intensive than the simulation of one-dimension elements. Because the spatial

domain is given by two independant variables, discretization in two dimensions in required. Asa

result, no simulation results are currently available. A complete development of the diract

simulation of two dimensional elements is the subject of future research.

5.3 Multiple Efement Formulation

Distributed modelling and simulation of multiple member structures, such as space
frames and trusses, is a considerably more difficult problem than the single element
situation, even for one-dimensional elements, The primary difficulty is in the mathematical
treatment of the bot-mdary condidons that arise at element junctions. A rigorous, general
assembly procedure for complex structures using direct PDE modelling remains to be
developed. One approach currently considered is to define a normalized local coordinate
system (x=0 at one end of an element and x=1 at the other end) for each structural member,
as shown in Fig. 5-5, and collect the states associated with each element into a large siate
vector. The dynamics of the entire structure is then stll represented by Eq. (5.1), and L,
becomes block diagonal, with each block representing the dynamics of one member. The
boundary conditions then relate various elements of the state vector at x=0 and/or x=1. The
difficulty in the direct modelling approach then lies in utilizing these awkward boundary
conditions for the purposes of simulation and control design. The direct multiple clement

formulation remains an open area of research.
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Fig. 5-5: Schematic of muld-element truss structure.
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6 CONTROL DESIGN BASED ON DIRECT PDE MODELS
‘This chapter studies the properties of optimal sol1tions to the distributed control of systems
described by direct PDE models. By distributed control, we imply that control effort is impareed to
the structure in a spatially distributed sense. This can be thought of as the limiting process of
employing an increasing number of actuators, all of which have a decreasing spatial domain of
influence. Partcular emphasis is placed on a specific example, that of a Bernouili-Euler beam,
Both finite- and infinite-length beam systems are studied, and comparisons are made between the
comresponding optimal solutions. Also, two types of beam actuation are addressed. The first is
force actuation, which is commonly used in theoretical studies yet is rarely achievable. The second
is curvature actuation, which is more realizable (as mentioned in the previous chapter) but less
often addressed in theoretical works.
Disu'ibuted—conu'ol is by no means a new topic. In fact, the essential mathematical

groundwork was established in the 1960's by Butkovskii (1960), Wang (1964), and Lions

(1971). The results then obtained were analogous to the classical LQR solution (e.g., the Riccati
matrix equation was replaced by a Riccat operator equation), and were derived using the principle
of optimality and/or advanced functional analysis. A later work by Tzafestas (1970) derived the
necessary conditions for optimality from a variational calculus approach. A mathematically
rigorous derivation of the Riccati operator equation is performed by Gibson (1979). Also, Balas
(1982) addresses several implementation issues, including the use of a finite set of sensors and
actuators and a finite order controller. Perturbation methods are utilized to determine criteria for
closed-loop stability. Until now, the complexity of the distributed control problem has rendered it
2 mere mathematical curiousity, rather than a practical tool. With today's computer resources,
however, the solutions to simple problems, such as the Bernoulli-Euler beam system described

below, are within reach.
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6.1 Linear Quadratic Optimal Control Theory. in the 1-D Case
The theory presented in this subsection closely resembles the work of Tzafestas (1970).
We restrict our attention to one-dimensional, linear, time-invariant disaributed systems. Such

systems can be written in the form
x(x0) = Ly(x)x(x,t) + BJu(x,t), x€[0,1], t2[0,00) (6.1)

which is identical to Eq. (5.1), except that the disturbance input has been set to zero. As before,

the boundary conditions are assumed to be homogeneous, and are expressed as

x(0,0) = x(1,)) = 0, te[0,) 6.2)

while the inidal conditions are expressed a5

x(x,0) = xp(x), xe[0,1} (6.3)

The simplest optimal diswibuted compensator is derived under the assumption of full state
feedback. That is, perfect measurements of x(x,t) are available in a continuous sense throughout
the spatial domain at every instant of time. It is also assumed that control actuation is available in a
similar distributed sense. While these assumptions are rather crude, they serve to define an upper
limit of achievable performance for the control system to be designed. The optimal distributed
control problem can then be stated as follows: Given an arbitrary inial condition, determine the
control required to return the system to the zero state while minimizing some cost criterion, We

will assume a linear quadratic cost functional of the form
1(f
= 3 ] [x.0TQEIxEx0 + uGe0TR (0] dx e (6.4
0

where Q and R are symmetric (possibly spatially varying) weighting matrices. This is the
distributed analogue of the ¢lassical linear-quadratic regulator (LQR) problem. Its solution is

obtained by extending the classical variational calculus approach to distributed systems. Note that
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the cost functional has infinite time horizon. This corresponds to the steady-state LQR problem.
The finite time problem is also of interest, but provides no additional insight.

We first augment the cost functional with the system dynamics via a costate vector, p(x,t):

oo}
Ja=17 +J0Jp(x,t)T[Lx(x)x(x,t) + By(x)u(x,t) - i(x,t)] dx dt (6.5)

—

‘The augmented cost functional now depends on the three vectors, X, u, and p. The cost is

minimized by seting the variation in cost due to independent perturbations in these three vectors to

b omees

zero, Thus,

b

o}l o
81,(8p) = 0'[0'[ Sp(x,t)T[Lx(x)x(x,t) + By(x)u(x,1) - i(x,t)] dxdt = 0, Vdp(x,t) (6.62)

sy fen———y

eo]
§7,(6u) = OH [u(x)TR(x)Bu(x,t) + p(x.) TBy(x)8ucx,] dx dt
0

[Rv—

ool
= JJ[u(x,t)TR(x)+[B;(x)p(x,t)]T]Su(x,t)dxdt =0, V3u(xt) (6.6b)

w]
8)y(8%) = OI J [x(x,t)TQ(x)Sx(x,t) + p(x,t)TLx(x)Sx - p(x,t)T&;((x,t)] dx dt

=l
= of 6[ [x(x,:)TQ(x) + [Ly()p(x,01T + i)(x,:)T]ax(x,t) dxdt = 0, V8x(xt) (6.6c) f
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Equation (6.62) recovers the system dynarnics, while Eq, (6.6b) determines the control law. The
superscript () represents the formal adjoint operator, which is defined by

1 1
J ()L (x)b(x) dx = J[L;(x)a(x)]'rb(x) dx 67

for homogeneous boundary conditions. For a linear spatial differential operator, its adjoint is
determined by integrating by pars with respect to the spatial dimension. Solving for u in Eq.

(6.6b) yields

u(y) = - Rx)B,(x)p(x,) (6.8)

The integrated terms resulting from the integration by parts in Eq. (6.6¢) vanish, due to the

homogeneous boundary conditions and the added requirement that

p0) = p(L,t) = 6, t=[0,%9) 6.9

The third term in the integrand of Eq. (6.6¢) is integrated by parts with respect to time. The
integrated terms go 10 zero due to the specification of the initdal conditions for the system and the

requirement that

p(x,) = 0, xe[0,1] (6.10)
Equations (6.1), (6.8), and the integrand in Eq. {6.62) 12ad to the following equations:

X(xt) = Lye(x)x(x,0) « By(x)R(x)" B (x)p(x,1)

. (6.11a,b)
p(x.t) = - Q(x)x(x,t) - L (x)p(x,0)

Equations (6.11a,b) represent the state-costate equations for the distributed control
preblem. Lions {1971) shows that there exists a relation between the state and the costate of the

form

plx.t) = Py()x(x,t) (6.12)
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where Py is some linear matrix operator on x. Substituting this form in Eq. (6.11) resulisina

nonlinear matrix Riccat operator equation in Py, Such an equation s, in general, difficult to solve.

Several approximate solution techniques are described in Juang (1983), Schaechter (1982), and
Zambettakis (1989). However, it is possible to express the linear operator in 2 different form, so
that a solution is easily attained by numerical methods. The assumed form of the soludon is the

same as used by Wang (1964) and Tzafestas (1970):

1
p(x,t) = g S(x,y) x(y,t)dy (6.13)

where S is the distributed-parameter analogue of the Riccati matrix for lumped-parameter systems.

Equation (5.9) automatically imposes the constraints

S(0y) = S(Ly) = 0, ye{0,1] (6.14)

For complete generality, S must include generalized functions, such as Dirac delta functions and
their derivadves, if necessary. Also, Wang (1964) shows that S is symmetric in its arg iments

(i.e., S(x,y) = S(y.x)). Using Egs. (6.8) and (6.13), the feedback control law becomes
1
uxd = - [KeNxtr0dy, Key) = R(x)IBi(x)S(xy)  (6.15,b)
Thus, the control law is linear and distributed.

It remains to derive a relation that enables the computation of 8. Differentiating Eq. (6.13)

and introducing Eq. (6.112) leads to
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1
pix) = JS(x,y) [Lyy)x(y.2) - By ()R () ' By(vp(y.0] dy
' 1
= J [S<x,y>L;<y>Tx<y.t)-s(x,y>B,<y)R(y)"B;mJS(y.z)x(z.o dz]dy
0

1

1
= f [S(x,y)L;(y)T-OIS(x,z)Bz(z)R(z)'IBZ'(z)S(z,y)dz]x(y,t)dy (6.16)
y .

Once again, an integration by pants applied to the first term in the integral results in the adjoint
operator. The boundary terms again vanish, subject to the restriction
S(x,0) = Sx,1) = 0, xe[0,1) 6.17)

Tt should be noted that the transposes of adjoint operators operate to the left in this case, Similarly,

substituting Eq. (6.13) into the right side of Eq. (6.11b) yields

. 1
pi) = - Q) X(x,D) J [Lyosyxty.n] dy

1
= OJ [QU8(x-y) + Ly)S(x.y)] x(y.0) dy (6.13)

where 8(x) is the Dirac delta function. Note that the state vector, x, is isolated from each term
under the integral in Egs. (6.16) and (6.18). Thus, subtracting these two equations and setting the

resulting integrand 10 zero yields the desired relation:

1
Lx(x)S(x.y) + S(x,y) L;(y)T +Q(x) 8(x-y) - oj S(x,2)B5(2)R(2)1B;(2)S(zy)dz = 0 (6.19)
This relation is a functional nonlinear matrix integro-partial differential equation in x and y, and

represents the distributed parameter analogue of the control algebraic Riccad equation, Note that

we have assumed S to be time-invariant, which corresponds to the steady-state linear quadratic
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regulator. For a finite time problem, the zero on the right hand side of Eq. (6.19) would be
eplaced by -%S(x,y).

6.2 Distributed Control of a Finite Beam

In this section, we apply the distributed control theory just presented to a Bemoulli-Euler
beam of finite length, as described in Lupi (1991a). Force actuation will be assumed initially, and
curvature actuation will be deferred to Section 6.2.5. The feedback gains will be determined by
numerical solution of the Riccat equations given by Eq. (6.19). Although these equations are
quite complex, their solutions are readily anainable with the proper mix of algebraic manipulation
and numerical computation. Pinned-pinned boundary conditions ar¢ assumed for the example

applications presented in this section.

6.2.1 Cost Functional

The dimensionalized form of the cost functional for this system is expressed by
avgT2 4
! 6[ J {qu(x)EI(x)[ d] + qr()m(x) [aT:] + 100 g fj} dxgdty  (6.20)

Thus, qy represents a weighting on deformational potential energy, gy represents a weighting on
kinetic energy, and r weighs control effort. The physical parameters EI, m and L are introduced so

that all three weights have the same units, The cost functional can then be normalized, yielding

= %‘J}l {qU(X)TI(X)[%]Z Q%(%_ av] n(x) } dx dt 62

where the nondimensional cost is defined by
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The cost functional then takes the form of Eq. (6.4), with

quixmn(x) 0 )
Q) =[ 0 %1(%)] R = 165 (6.23)

6.2.2 Derivation of the Necessary Conditions
We must first determine the adjoint operators corresponding to Ly and by. This is
accomplished by using the formal definition expressed in Eq. (6.7) and integrating by parts,
yielding
K 2 .
Liw = LI = [, % 37, b = b0 = 0B@]  (624ab)

Using these expressions in (6.19) yields

1
LiS(xy) + Sxn) Ly T+ QQo) 8xy) - 0[ WP s (x,2) [§ ] Serdz = 0 (6:29)

Also, making use of Eq. (6.15), the feedback law becomes

1
w(x) = - a[ k(xy)Tx(y.dy, kixy) = [ﬁ;g;’;] = 1080 [g;;g;gg] (6.263,5)

The effect of the curvature feedback term (k;) is to sdffen the beam, which reduces the setding time
of the system, while the effect of the velocity feedback term (k;) is to increase the damping of the
system.

Equadon (6.25) represents a system of four coupled, nonlinear, integro-pardal differential

equations. Due to the symmetry of §, the fourth is redundant. Also, only Sy and Sy, are needed
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to compute the feedback gains, The equation for S5, which represents the curvature feedback

gain kernel, is uncoupled from the others:

& Ipeo sz(x.y)] + 251807 S 1265)]

= qu{x)n(x) 8(x-y) - JM%Z-LS 12(x,2)S12(z,y) dz 6.27)

Similarly, for the velocity feedback gain kemnel, the relevant integro-partial differential equation is

[n(x) sz(x,y)] +3 [n(y) S1a(x,)]

+ 9 T 5x.y) - Jw‘}(%!ﬁszz(x,z)sn(z,y) dz =0 (6.28)

Note that this second equation requires knowledge of Sy3(x,y), which is determined vpon solving
(6.27). Thus, the two equations must be solved consecutively, using approximate numerical

methods.

6.2.3 Numerical Soluton of the Riccati Equations

Previous attempts to obtain a numerical solution to the optimal distributed coatrol problem
for a particular system have most often dealt with the operator form of the Riccat equation, which
is derived by Gibson (1979) using Eq. (6.12) rather than Eq. (6.13). Usually, the solution is
expressed as a series expansion of spadal differential operators of increasing order, as in Juang
(1983). In some cases, the distributed control law is only solved at points where discrete controls
are to be applied, which leads to a slightly suboptimal design. Balas (1982) takes this approach.
However, in this formuladon, the funcdonal form of the Riccati equations leads naturally to a
numerical solution procedure. Because of the fundamental differences in the forms of Eqs. (6.27)

and (6.28), a separate algorithm is developed for each equation, as discussed below.
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6.2.3.1 Solution of the First Riccati Equation

Equation (6.27) is solved by spatially discretizing the domain of Sy, and using finite
differencing and summation to approximate the derivative and integral operations, respectively, A
modified relaxation algorithm is then invoked to converge upon the solution. We begin by

discretizing the spatial variables according to

X =&, i=0,.N (6.29)
and defining the mesh
sij = spa(pyy) (6.30)

A simple approximation to the derivative terms is then

2 B S1atx)] +-:y% () Siatxy)] = N2 [AB - 23Bpsy] (63D

where Ag. is defined by
A% = Bioa Sy + Bivt Sivt j ¥ Bjia Siju1 # Bjet Sijma (6.32)

The forcing term in Eq. (6.27) can be approximated by

Qu0IN(x) 8(x-¥) = Nay; (6.33)

and &;; is the discrete Kroneker delta function. Finally, the integral term is replaced with a

summation, leading to

1 N
1(xB)2 082
J S S12(x2)S12(zy) dz = ;—,g ‘%ksik $kj

where
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I = Z —-ks,k Skj (6.35)

k=0
ki
kaj
Note that, in Eqs. (6.31) and (6.34), the terms involving s;j have been isolated from terms
involving neighboring points. Collecting the approximate expressions, we have, for the finite
difference equation

2

82 ;B
MAB 2\(’((31"‘3))51) = Nqu‘n, i - I - —(2‘—1-5" ..L_J.s”)(l - 1563) Sij (5_35)'

5

Thus, given an initial estimate for the solution at each mesh point, s the entire mesh is

successively iterated according to the rule

s o sh-odl, 0<w<2 6.37)

U] ) ij’

In this last equation, e:; represents the residual error at each mesh point at the n-th iteradon. An

expression for this error is obtained by solving Eq. (6.36) for Sijh which yields
v 1
I\ZAR + —Iij - Nqy niBij
7
2 L n,P5 B¥
2NA(Bi+By) (n Sii ¥ 7y SJJ)(l u)

Also, @ is a relaxation parameter, and can be adjusted to maximize the rate of convergence towards

& = S - (6.38)

a solution, as discussed in Press (1986).

The condition for a converged solution is given by
n .
e8] <&, vij (6.39)
where € is some small positive constant. The relaxation method is guaranteed to converge whenr
approaches infinity (In this case, Eq. (6.27) reduces to Poisson’s equation), and tests have shown

that convergence is maintained over a wide range of values of qy and r, provided o is adjusted

accordingly.
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In Fig, 6-1, the gain surfaces for various qu/r axe shown for the case of constant section
properties. The effect of the boundaries can be seen by observing the gain surface near
(x,¥)=(0,0) and (x,y)=(1,1). Qualitatively, the influence of the boundary conditions extends over
a smaller domain as the control authority is increased (i.e., as the quantity 1/qy becomes smaller).
A quantitadve analysis indicates that the extent of this “boundary layer is roughly proportional to
(t/qu)¥4, This makes sense physically, As the control authority is increased (r decreasing), the
system is able to suppress the majority of a disturbance before the energy reaches and reflects off
the boundary, Thus, near the center of the beam, the controller models the beam as if it were

infinite in length,

6.2.3.2 Solution of the Second Riccati Equation
Equation (6.28) does not have a well-behaved solution, since it requires that the integral of

Spa(x,y) cancel the delta function. We therefore make the following substitution:

$2200¥) = Spxy) +,R‘-')%)—2 8(x) 8(x-y) {6.40)
where
8 = VEBQ 150 00+ gr00)] 6.41)

This is equivalent to identfying a collocated component in the velocity feedback kemel. Equation
(6.28) then becomes

1
0[ S nlen e + St -y =0 (62

where the known forcing term is given by

2 2 2
c{x)y) = -aa;i[n(X)sz(x.y) +:—y,—[n(y)8n(x.y)l-qu(x)%i(’g—ﬁtx-y) {6.43)
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Tt is easy to show that c(x,y) is continuous (assuming n(x) and B(x) are continuous), as the partial
differentiation terms produce delta functions that exactly cancel the term involving 3{x-y).

The solution algorithm for Sy, is straightforward. Upon discretizing in the spatial
dimension, Eq. (6.42) becomes

§20R1829 +5,3G +G8;-C = 0 (6.49)
where
§n= [§22(xi')’j)] (6.452)
C= [c(xi.yj)] (6.45b)
G = diag [3(x)] (6.45¢)
- R = diag [N ﬁ('x%()x?] (6.454)

and N is the number of mesh points between x=0 and x=1. The matrix equation is solved by

completing the square. After pre- and post-multiplying by R12, Eq. (6.44) can be factored as
[R125,,R 17 + G |* = RIPCRI2 4 G2 (6.46)

The right hand side of Eq. (6.46) is symmetric and positve semidefinite. It therefore has the

eigeavector decomposition

RI2CRI2 4 G? = WAWT (6.47)
where A s a diagonal mawix with non-negative entries. Finally, substituting Eq. (6.47) in Eq.
(6.46) and solving for Sy, gives

§2 = R [wWAV2WT. GJR!? (6.48)




Typical k(x,y) surfaces are shown in Fig. 62 (Ky(x,y) is just ky(x,y) without the delta function

corresponding to the collocated feedback component). Finally, Fig. 6-3 shows the feedback gain

kernels associated with a tapered beam.

6.2.4 The Case of Curvature Actuation

For the sake of simplicity, we will assume constant section properties and weighting

functions for this case. This makes it possible to obtain an analytical expression for the feedback

gains, (Note that, for force actuation, a numerical solution procedure is required even in the case

of constant section properties and weightings.)

The feedback gains, expressed in terms of the solutions to the Riccat equations, become

2
) = 2 Sp0n, ko) = 1 snty)

and the functional Riccati equadons themselves become

1
32512("»?)"‘ =Sy = quitey) - & f Syalx, z)—smz,y)dz

l
2 2 v
£ 8120xy) + 5 Spalxy) + ar S(xey) - & j $22(%,2) L3 Sp0(zy)dz = 0
ax dy "0 3z

Integrating by parts and invoking the homogeneous boundary cenditions yields

1
2 FLa = 122 2
52 Sy + o Sialxy) = qud(xy) - ,of 32 512(0,2) 7S 12(zy) dz

1

32

Furthermore, introducing Egs. (6.492,b) and exploiting the symmetry of S(x,y) yields

119

2 2
S.z<x,y>+ S 12(x) + qr 8(x-y) - H Hsnen Sty = 0
0

(6.49a,b)

(6.502)

(6.50b)

(6.512)

(6.51b)
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Fig6-2: Velocity feedback kemels for uniform beam: (2) 1/qy

0, (o) t/g,=10"* and

10 and g =

q=y
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1
2kp(xy) = qudlx-y) - Jktz(x.Z)klz(z, ydz (6.522)

1
fd[kzz(m)kzz(z,y)dz = 2rkja(xy) + qp 8(x-y) (6.52b)

It can easily be shown that the generalized functions

Ky(xy) = [\/14-"—8 - 1] 8(x-y) (6.533)
ky(xy) = ‘\/ sz ['\h + W 1] 8(x-y) (6.53b)

solve the Riccari equations. The optimal control is therefore purely collocated, even though the

controller has access to the state vector over the entire spatial domain,
6.2.5 Closed-Loop Simulation Results

The closed-loop simuladons of a uniform beam with a sinusoidal initial condition and
various control and state weightings are shown in Fig. 6-4. As expected, the response of the
system becomes faster with increasing control authority. In Fig. 6-5, the response of the system to
acenter-span transverse impulse is shown. This figure can be compared with the open-loop case,
shown in Fig. 5-3. In this case, most of the disturbance has been suppressed before it reflects
from the boundaries, and the first mode of vibration is never established. This is characteristic of
high-gain control systems, which provide high levels of daroping augmentation. For these
systems, the energy in the propagating wave is effectively absorbed as it progresses towards the
boundaries of the system,

In order to compare the performance of the optimal distributed controller with the
performance of discrete controllers, finite element models of the beam system were developed.
These models have as state variables the same quantities that are used in the distributed model (i.¢.,
curvature and velocity), but are only available at discrete points along the soructure. Similarly, the

control inputs are available at a finite number of stations along the beam. These models were used

122

P S




Juswosedsiq

POTHELUION

wawoeydsicy

L2 ATCIGN

0.0

~10

0.0

]

wotosedsiq
DPZIULON
0.0
|

T [

] ¢
&O’b&b 05 0 9 153, .

o I\om:aﬁzcd Time é‘&\&&'&
o
&
(0 ’
Q

0.0
i

wawaseidsiy
PoZIEUUON

-1.0

0.
Normali > 0 a &"&&
Ormalized Time S
P
+

©
Fig 6-4: Closed-loop simulation of uniform beam with vy(x)=sin(2mx): (a) r/qU=10'2 and E
a;=qy, (0) 1/, =107 and g =q;, (¢) tlay=5%10 and q;=qy, (d) /=10 and g =q. i

123




e -

"2[L0s S oy (q) *aguas sw Juorg (v) :(Pb="D pue ,-01=""0z3)

ueds-101u20 1 payydde ospndun iun itm wieaq unogium jo uoneuns dooj-pasor)  :6-9 i

@ ®
b..s.ess
: i, o,
owy, pziiwioN 0 0 x.k.aeo\ﬂ._ aut ], PILUEULION
‘0 .
o1 s | ot s0

&

o
A \\JWMM /M//@#/(,N; ..,\»me.f«v»,, .\.\r ] 8
“ZQ

0's
Ol

10°0-

000

100

[ 2 ]

124

Nommalized
Displacement




to develop full state LQR control laws for the discrete systems. Both ths sinusoidal initial
condition and the center-span impact cases were addressed. Table 6-1 summarizes the results of
the study. In all cases, the optimal cost required to retum the system to rest approaches the optimal
distributed cost as the discretization becomes finer, (Details on determining the optimal cost for the
distributed conwoller can be found in Appendix D.) This is convincing evidence that the

distributed control formulation indeed converges upon an optimal solution.

6.3 Distributed Control of an Infinite Beam

In this section, we validate the results for the opimal control of finite beams by considering
an infinite beamn system. Most of the formulation presented in this secdon is based on recent work
by deLuis (1989). The basic idea is to work in the spatial frequency-domain, using the spadally
transformed dynan;ics of the beam system. This reduces the distributed control problem to 2
family of conventional opimal control problems, parametrized by the spatial frequency variable.
The infinite model requires that the section properdes and cost weightings be spaiially constant, so
that the spatial ransform is possible. In his work, deLuis relies on functional analysis arguments
to jusdfy the form of the control law. In contrast, the approach presented here is somewhat more

straightforward and inwirively satisfying,

6.3.1 Spatially Transformed Dynamics and Cost Functional
Because the beam is of infinite extent, we can take the spatial Fourier transform of (5.1).
The resulting equation of motion, expressed in terms of t and the spatdal frequency, , is then
REn = AGRED +bOEY (6.54)

where A(E) is obtained from Eq. (5.12a):

o - [0 -&2
AQ) = [gz 0 ] (6.55)
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Weightings Lumped Parameter Formelation Distributed
8 16 32 Foroaulatioa
Guidr| r elements | elements | clements
11| 10¢ 13.68 13.28 13.19 1315
Ll afa?f 220 2172 2165 2164
1| 1|02l s679 56.67 56.64 56.63
10) 1§ 107 15848 156.62 15613 156.13
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il 1l w02 | esoxto | 70sx107 | 7.05x10% | 7.0710?
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Table 6-1: Comparison between optimal cos:s for distibuted control and conventional lumped-
parameter control. In the table, J4 corresponds 10 an initial displacement field vg(x)=sin(2rx), and

J4 corresponds to an initial unit impulsive disturbance applied at the center-span of the beam,
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The ransformed state variable and the transformed control input are, in general, complex-valued.
However, because A(§) and b are purely real for this system, the real and imaginary dynamics

decouple, giving
QED = AGRED+b0EY, 2ED = AGRED+bOED  (6562,b)

Thus, for each value of &, we are left with two identical real-valued systems for which an optimal
control solution is desired.
The cost functional 1 be minimized is quadratic in the normalized variables. For

distributed control, we must integrate over the entire (infinite) domain. The cost functonal is thus
1 oy Sw w2 2
1= ZOU {qu[-a?-] +ar [2] +rfu} dx di (6.57)

In this last expression, which is analogous to Eq. (6.21), qy and gr weigh potential and kinetic

energy, respectively, while r weighs control effort. Equation (6.57) can be writien
‘ t»
J=3 0] Jg() dt (6.53)
where
10 = [ [0y + rux?] dx (6.59)

and the following definitions have been made:

yxd) = Q¥xtxp), Q = [3” gT] (6.60,b)

By making use of Parseval's theorem, we can write

o = 5= J' [RE0¥QRe.n + rl8E0I*] gt (6.61)
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where the superscript &) represents the complex conjugate transpose operation. Now,

interchanging the order of integration in (6.58) yields

1= 1@ (662
where
Q) = J [ReofdE.n + rlfEoP] ar (6.63)

At this point, the following observation can be made: J is minimized if and only if J(8) is
minimized for every value of &. We must now express X(¢,) and §(Z.t) in terms of their real and
imaginary parts. Because Q and r are purely real, the (imaginary) cross-terms cancel in (6.63),
and we are left with

W = OJ [ RE0"QR(8.1) + rB,E07?] dt

3

+ [[HE0MQ/E D + 1 6,E0] dt (6.64)
0

6.3.2 Optimal Control Solution
For each value of €, we have two identical dynamic systems given by Eqs. (6.562,b) and
two identical cost functionals given by Eq. (6.64). Therefore, the control laws relating & to & and

; to &; will be identical, and can be combined into the single equation

ey = -keTeEn (6.65)

where the transformed gain vector, f:(é), is a real function of the spatial frequency. Taking the

inverse transform of this equadon yields
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u(x) = - [KkGe-y)x(y.9) dy (6.66)

Thus, the integration kemnet k(x-y) can be though cf as 2 weighting from the sensed state at a
location y to the control acmation at a location x, Classical LQR theory gives, as the optimal

solution
k@ = [ ko) = 16Tse) (6.67)

where S() solves the control algebraic Riccati equation

AQYSE) +SEAR) + Q- Ls@bbTsE) = 0 (668)

Substituting the known parameters A(g),b,Qandrand solving for the elements of § gives

S®) = r§2\]1+AUV1T+2H3+xU-1] (6.692)
$120) = -r& [V1e2y-1] (6.695)

$21(8) = réz'\/lT +2 [\J 14Ay - l] (6.69¢)

where

Ay = %} Ar = b (6.702,b)

Note that the entire behavior of the solution is parametrized by the dimensionless groupings, Ay
and Ay, Since § has the units of inverse length, we can infer that (r/qy)V# and (r/qp)¥* represent

nondimensional distances.

Substiwting Eq. (6.69b) in Eq. (6.67), we obtain, for the feedback gain relatng curvature

to force,
k%) = QuAY# ;[ (quin '] (6.71)

where £,(+) is the inverse transform of ?,('), given by
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t@=-[Veee - g2] 6.72)

A plot of f;(+) is shown in Fig. 6-6. Some qualitative features of the feedback gain become
apparent upon examination of Eq. (6.71). First, the magnitude of the feedback varies as (qy/)*%,
so thatincreased curvature penalty and reduced control penality both increase the feedback gain, as
expected. Second, the argument of f;{+) indicates that the control becomes more localized with
increasing state penalty and increasing control authority. This makes sense in terms of the
nondimensional lengths described above. High control authority suggests that a disturbance can be
suppressed quickly, before the majority of the energy travels very far along the beam, whereas low
authority requires a longer time interval (and hence greater distance) to suppress the disturbance.
These features are also observed for the finite beam system described in Section 6.2. In fact, cross
sections of the finite beam gain kemels, taken near the center of the surface, have the approximate
shape of the gain kernel for the infinite beam system, and the approximarion gets better with
increasing control authority. A quantitative analysis indicates that this is the case when r/qy < 103,
In computing k(x), the velocity to force feedback term, an interesting feature emerges.
The Riccati solution, $35(&), does not go to z¢ro as  approaches infinity. As a result, the inverse
transform of Qz(é) will include a delea function. In order to make the inverse transform
continuous, this bias term is subtracted from Qz(é). and a delta function with magnitude equal to

this bias is added to k(x) after inversion. Thus, the velocity feedback gain kemel is expressed as

k(%) = (qu/t)¥* fr{ (qu/dVx ;i qr/qu] + '\/9‘;4+ q—} 8(x) 6.73)

where

?2(5:7) = \/Y-Zkz?;(é) Ayl 6.74)

This corresponds exactly with the inroduction of a collocated velocity feedback term for the finite
beam system. Indeed, the magnitude of the collocated gain agrees with the finite case, with the
assumption of constant section properties and weightings. Note that the velocity feedback term is

parametrized by the same nondimensional length as k, (x), but an additional parameter, the ratio
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between kinetic and potential energy penaldes, is also present. Plots of f5(+;¥), shown for various

%, are shown in Fig. 6-7. Once again, cross sections of the velocity feedback gain kemel for the

finite beam case agree quite well with the infinite beam kemel,

6.3.3 The Case of Curvature Actuation

We now swudy the case where a distributed actuator capable of inducing curvature in a
continuous manner represents the contro! input. Such is the limiting case of a beam with many
embedded piezoelectric actuators distributed along its span. For this system, the equation of

motion is modified to

2 2
aifzv(x,x) + gﬁv(x,t) = sa:,_-mc(x.t) (6.73)

where m.(x,1) represents the net action of the distributed piezoelectics. By making the new

definitions

u(x) = me(x0), bE) = [g,] (6.760,b)

the transformed equation of motion becomes
RED = AGREH +bEIGY 67

This equation is identical to Eq. (6.54) except that b is now a function of . This subde difference
has a profound effect on the control law. Following the same procedure as in the previous

subsection leads to expressions for the transformed gain kemels which are independant of &:

f=q1+® o, b= \/%hz £, (6.78a,b)

k) = K8, kK = &5k (6.792,b)

As aresult, we have
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The optimal control is therefore purely collocated, even though the controller has access to the state

vector over the entire spatial domain. This result is quantitatively identical to the finite beam case

presented in Section 6.2.5, regardless of the state and control effort penalties.

6.4 Discussion

It becomes clear that the choice of actuator for the Bernoulli-Euler beam system has 2
profound effect on the optimal contol law. With a distributed force acruator, the curvature
feedback is purely distributed (becoming more localized with increasing control authority), while
the velocity feedback has both collocated and distributed components. For a finite beam, a
nondimensional length, which depends on the state and contro! effort penalties, indicates the extent
1o which the boundary conditions imposed on the finite beam affect the optima! control solution.
Numerical examples for finite beam systems support this claim,

For a beam with a distributed curvature actuator (a more realistic and impiementable
situation), both the curvature and velocity feedback gains are purely collocated, regardless of the
nondimensional length parameter. As a result, the boundary conditions do not affect the optimal
control solution for this type of actuation. The next logical step in this analysis would be to study
the effect of replacing the distributed actuator with a set of discrete controls, which better reflects a
physically realizable controlled structure. It would be interesting to observe whether or not the
optimal feedback gains are still collocated for a set of discrete embedded piezoelectric actuators.

Atpresent, no claims can be made concerning the robustmess of the distributed controller.
A quantitagve robustness analysis would help determine the sensitivity of the performance of the
system to esvors in the structural model. Also, the assumption of a truly distributed controller is

rather restrictive. Any implementable system will consist of a finite set of sensors and actuators.
Consequently, the theory must be extended to account for discrete sensing and actuaticn. It may
be possible to extend the optimal output feedback approach discussed by Levine (1971) or the

optimal projection approach developed by Bemstein (1986) in a manner amenable to the discrete

sensing/actuation problem.
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Another future research topic is the determination of optimal distributed control laws for
arbitrary boundary conditions. Such a development was attempted by Tzafestas (1970), but has
found extremely limited application. For example, the optimal distributed control of a cantilevered
beam was addressed by Bailey (1984) using Tzafestas' formulation, with the conclusion that the
boundary conditions could not be posed in the specific mathematical form required by the
formulation. Clearly, the problem lies in dealing with the boundary conditions which arise when
determining the adjoint operators in Egs. (6.6a-¢). These boundary terms result in additional
necessary conditions for optimality, expressed in terms of ordinary differential equations.
Currently, no general formulation exists which includes these extra condidons, The ability to
handle general boundary conditions would make it possible to develop control laws for multiple
element swucturss, such as space frames and trusses.

Another possible application of disaibuted control theory is in the active control of two-
dimensional structures, such as mirror surfaces and shell szuctures. However, numerical
solutions for plates and membrane models require extensive computational capabilites, and

therefore represent an ambidous undertaking.
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7. HYBRID MODELLING AND CONTROL APPROACH FOR HAC/LAC DESIGN

It remains to develop a control strategy that utilizes the best aspects of both the TEM and
direct modelling methodologies. For example, the distributed control solutions obtained through
the direct model could form the basis for a LAC design. The resuliing model of the controlled
structure could then be transformed, and 2 HAC controller could be designed by posing the
problem in the standard form, as described in Secton 4.2. Finally, command prefiltering of
control inputs for slew maneuvers would be determined using the open-loop optimal conwol theory
discussed in Section 4.1, The exactness of the theory makes it more atractive than modal-based
approaches, such as the work of Singer (1990). The entire hierarchically controlled system would
then have the general form shown in Fig, 7-1.

Inherent in this objective is a general unification of the two modelling approaches, which
has not been achieved to date. Such 2 unification would be a profound improvement in the atiilty
to develop exact control models for large flexible stuctures. Analytic TEM soludons do exist,
however, for some specific controlled structural elements. Consider, for example, the Bemoulli-

Euler beamn with curvature feedback. The dynamics equadon, expressed in dimensional form, is
o AL 22 7
axd V(X,l) + P a‘z V(X,() = a‘z mu(xr!) ( -1)
The optimal disaibuted contoller is collocated in this case, with the normalized feedback law given
by
2
myx0) = -k Z5v0e0 - ke vie) (7.2)
where k) and k; are determined via Eqs. (6.53a,b). Converting this feedback law into dimensional
form yields

2
myx0) = -KEL L5 v(e) - kyVpABl Zvixy (1.3)
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and substituting this expression in the dynamics eguation produces the equation of motion for the

controlled soructural element. It is given by

EI (1+k,) v(x t)+k2'\jp a 28 o vi(x, t)+pA v(x ) = (7.4

Tt is now possible to transform the closed-loop dynamics into the frequency-domain. Assurning

zer0 initial conditions, we have

(1-rk,) v(x s) - jksy a2 v(x 8) + adv(x,s) = (7.5
where
o =G (7.6)

The homogeneous Solution vector is then given by

\'H(X,S)T - [ealx o G1x cjazx c.ju;x] .7
with
\‘ 1+ kl
ul = 1+ kl
(7.83,b)

&z = 1+k,

The expression for the intemal state vector in terms of ¥(x,s) remains unchanged, and is given by
Eq. (2.60). The same can be said for the generalized boundary displacements and forces. The
homogeneous solution vector can then be used to derive analytical expressions for the dynamic
suffness and interpolation matrices, which will be slightly more complex than the matrices
corresponding 10 the uncontrolied beam.

Unfortunately, if the feedback is indeed distributed rather than purely collocated, Eq. (7 5)

becomes an integral equaton. A general solution is therefore not available. However, the form of
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the gain kemels for a particular problem (e.g., beam with force feedback) may lead 10 some form
of analytical solution, or, at least, an accurate approximate solutdon, Whether or not these classes
of controlied structures lend themselves to analytical TEM models in the general case remains 2n

unresolved issue,
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The mathematically exact TEM and direct structural modelling methods have been-
developed and demonstrated, By retaining the dynamics that describe the structural model over the
entire frequency range, accurate behavioral predicdons are available. For example, the wave-like
propagation characteristics associated with impulsive disturbances are easily observed using either
exact modelling approach. In addition, these models do not require modal analysis techniques,
although modal information is available for TEM models of frame-like structures. Furthermore,
the frequency-domain analysis incorporates general viscoelastic damping mechanisms in a very
straighforward manner. Finally, the dramatic increase in computation speed of the TEM analysis
technique over tradidonal finite element modelling has been demonstrated.

New control formulations were developed that 12ke advantage of the infomation available
via the exact modcﬁing methods. An open-loop optitnal contrel technique was demonsirated using
TEM models, and was found to virtually eliminate the residual energy associated with the slewing
of flexible stuctures. The only approximation made concerned the control inputs themselves,
which were 2ssumed to have limited bandwidth. The direct analysis echrique provided the
framnework for a distributed control theory. Having been developed, the theory was applied to 2
simple Bemnoulli-Euler beam system, and the feedback gain kemnels were determined. These
kernels agreed with previous results concerning the optimal distributed control of an infinite beam.

Several issues remain unresolved, and are recommended for future research. Although the
TEM methodology has been developed for two-dimensional structures, it is incomplete in two
tespects. First, the selection of boundary points ang their relation to element geometry and
solution accuracy must be addressed. Second, a rigorous method of determining the set of basis
solutions for the homogeneous solution vector must be developed. Clearly, these two goals are
intimately tied, as the number of basis solutions required is direcdy related 1o the number of the
boundary points used. Inherent in this analysis is a comparison between the TEM analysis and

finite element models of two-dimensional structures.
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remairns 10 be solveds Here; the lack of a finite state-space representation of the plant is the-
fundamental difficulty. It may be possible to extend the coprime factorization technique to general
structural systems, or develop some other approach.

The distributed control solutions developed here must be extended to include other
structural elements, such as Timoshenko beams and axial and torsional rods. Two-dimensional
¢lements, which may represent deformable mirror surfaces or solar panels, must also be
incorporated into the distributed control framework, although this extension presents a
considerably more difficult computational challenge. Finally, the theory must be extended to apply
to muld-element structures, which may include any of the elements mentioned. The ability 10
handle the complex boundary conditions that arise at element juncdons is the primary difficulty
here. )

An evaluation of the robustness of the distributed controller to model uncertainiy must also
be undertaken. Discrepencies between the model and the actual physical structure, caused by
tolerances in physical dimensions and material properties, structural joint dynamics, nonlinear
material behavior and other unmodelled dynamics, usually result in performance degradation. A
Tigorous robusmess evaluation would quantify the relation between modelling error and
performance. Linked to this issue are implementation considerations. Because actuators and
sensors are always discrete in nature, the distributed control solution represents only a limiting case
as the number of individual actuators and sensors approaches infinity. For any ‘nplementable
control design, then, the effect of utilizing a finite set of actuators and sensors must be addressed.
Alsorelevant is a study of the effect of actuator and sensor dynamics and their relation to robust

stability,

A combined direct/TEM control methodology for structural systems is not yet available.
This hybrid technique would facilitate the development of hierarchical control schemes, such as
HAC/LAC, without resorting to modal analysis and truncation. Consequently, the problems of

control and observation spillover would be alleviated, at least from a mathematical perspective,
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APPENDIX A%, HIGH Fkéqqugg\ TEM ELEMENTS
- M‘Ihi?i;;;ichdix présems the éfnazmc stiffness matrices for high frequency TEM elements.
In particulaf, the Mindlin-Herrsoann axial rod and the Timoshenko beam, both described in Sec.

2.3.6, are discussed.

A.1 Mindlin-Herrmann Rod

The dynamics of the Mindlin-Hermmann rod are characterized by the following set of

differential equations:
2
- a2 (A+2G) éé;i vi(%,8) * pa2slvy(x,s) = 2&% vo(x,8) (A.l2)

226 T vy(x) - [82046) +pa2s? [vptee) = 4adh v (Alb)

All symbols in these equations are defined in Sec. 2.3.6. These equations apply to a rod of
circular cross-section only. The Lame constants are related to the modulus of elasticity and

Poisson’s ratio of the material according to

- Ev _ _E
A= Q)29 ° G= 20+v) (A.2a,0)

We will assume that the radial deformation, v4, is constrained at the boundaries of the element.
‘This is the case when the element is embedded in a structural junction. We therefore have

v3(0,s) = vo(Ls) = 0 (A3)

With these constraints imposed, the stiffness magix becomes 2-by-2, and can be expressd by

- ,_,_a_zg Bysica - Basacy - Bysy +Basay
K& = 5% ['5151 +Basy Bysyey- BZSZC!] @9

where

AGs) =

(1+v){1-2v) [25152(1'01"2) + (Bf*ﬁg)sxsz] (AS5)

(1v) Bi(az3) - Ba(xya)

and the following trigonometric definitions have been made:
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_ [Pamn-2v2pa? - 166 2E  (aie) + x’(l-v)(l-2v}E (a,a)3

i 4(1-v)(1-2)pals? + 16K1E an
and the nondimensional parameters o2 and o2 are given by
(o2)2 = & [(l+)\20) % \/ (14A,0)2 - %(Hxso) G J (A8)
where
oAy = 4_’1:&:"_) ) = (1+x2)(1-22v)+1
U 8 (A92-d)

2 242
A3 = (1+v)§12..v) g = paEs
4xl

The stiffness matrix can be shown to reduce to that of the simple axial rod either by setting v=0 or

by taking the limit as the radius, a, approaches zero.

A.2 Timoshenko Beam
The dynamics of the Timoshenko beam can be expressed either as a system of two coupled

partial differential equations or as the single equation

EIEB:TV(X)‘) + PA.\-’(X,I) - pI [1+ k] 52 V(X l) + E_ V(X [) fd(x t) (A.]O)

Taking the Laplace transform of this equation yiclds
| v(x ) + 2p1a2 v(x §) - odv(x,s) = Tax,s) (A.11)

where the following parameters have been defined:

P -
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. (mr)z_p2 1- kl(ur)“ :
The homogeneous solution vector is then -
' T Teoi@p)
Vaks) = | e A13
sin{af,x).
where
B2 =p3-p1. PZ=p3tpy (A142,5)
and
P} = pR4pl = 143 (1K) o) (A15)

Due the the internal shearing allowed by the Timoshenko mode), the expressions for the internal

state vector in terms of the homogeneous solution become considerably more complex. They are:

1
1 R 7 I
2 [(1+P4) i "3']
P2

;(x.S)
u(x,s) = M(();.ss)) = [ +p4az] v(x,5) (A.16)
S(x,s)

where

= kj(on)? (A17)

The stiffness matrix then takes the form given by Eq. (2.66), with
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i‘b"’Kl(s) 22-([34 sh- B3 st) E‘{i": .
KKz(s)"é 2] (B3 chst- B4 shet) <0 7_"
K3(s) = 25 (ch-c)

e

Ky4(s) = ;lui [ELPlﬂ shst+ (pl-p4)(1 ch ct)]
Ks(s) =2 (B3 sh+ By s1)

Kg(s) —-!-(134 chst+ B3 shet)
A = 4 [1 chc:-—(‘—’l shst]

The trigonometric quantities must also be modified to

ch = cosh(af;L)
sh = sinh(aB ;L)
ct = cos(af,L)
st = sin{af,L)

where

By = 1321"'1’4 By = ﬁzz"'m
By ' B2

RIS

H

(A.18ag)

(A.192-6)

(A.202,b)

The stiffness matrix for the Bernoulli-Euler beam is recovered by setting the characteristic radius,

1, 10 2¢10. Then, py=p4=0, py=p3=1, and B=P,=P5=P4=1.
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In this appendix, we extend the results of Section 5.1,2.3 1o the case of & beam with 2

distributed curvature actuator. ‘The modified equation of motion, expressed in the time-domian, is
32 32
g[n ) ax—zv(x,t)] + %—)ﬁv(x ) = mu(x 0+ fo(x,0) ®.1)
which becomes, after Laplace transformation
5 2L'n(x) 2y (%, s)] ) [52 v(x,5) - s vp(x) - vo(x)] mu(x sy + £,(x,8) (B.2)

The assumed linear feedback control law is
1

ms) = - [ [kaen n) S0 o Zvivo] ay ®.3)
0

which transforms into
1

- 2 . -
my(x,s) = - f [kl(x,y)n(y)aa?V(y.S) +k2(x.y)SV(y,S)] dy
d

1
+ 6[ [ ka(xy) vo(y)] dy ®.4)
Substituting this expression into Eq. (B.2) leads to
2 2 2 2 !
& 25 L 2 2. .
ax;[’ﬂ(x) 32 v(x.s)] *50 v(x,$) + 32 of [kg(x.y) n(y) 32 V(y,s) + ska(x.y) v(y,s)] dy

1
= fr(x,s) + R‘; {\'/o(x) +s vo(x)} + ;—%[ ko (x,¥) vo(y) dy] (B.5)

Employing the same discretization technique used in Section 5.1.2.3, we obtain, for the finite-

difference equation
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Al terms in this Jast equation aré as defined in Secdon 5.1.2.3,

RN PET S NP ST T Bt pom e gt

147

I X5)

e




=i

B O wee) e e

*%
s
»

" APPENDIX.C:! SIMULATION OF ‘A TIMOSHENKO BEARM' 0 sa: ~1.

4

¢~ 7" - Inthis appendix, we discuss the direct simulation of a Timoshenko beam, For simplicity,

we will assumed that the initial éonditions are zero and that the section properties are constant,
although other sivations can be treated in a manner similar to the Bemoulii-Euler beam model.

The dimensional form of the equation of motion is
Els-z%vd(xd,td) + pA Ealdlz-vd(xd,zd) - pl [1%]§:§‘¥a?vd(xd,@ + %%vd(xd,zd)
= fy(x,1) (C.1)
which can be normalized (using the same groupings as in Section 5.1.2.1) 10
L+ Lovten) - oy [14g] 255 vk + o Lvid =t (C2)

where

I Ek
o = A E=g (C.3a,b)
Taking the Laplace transform (neglecting inidal conditions) yields
c

- 2 . . . .
ggv(x,s) - 0 [l+a_=_] szﬁv(x.s) + s2V(x,5) + opog sé v(x,s) = f(x,s) (C.49)

Finally, the spatial discretization yields

[N4D24 52 (- o)(14ag)N2 D) + op201, s4I] ¥(s) = 1(s) (€.5)
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APPENDIX D+ OPTIMAL' COSTS FO

. S 1

R DISTRIBUTED CONTROL SYSTEMS

-~ - This appendix discusses the computation of the optimal cost required to bring a distributed
system to rest from an arbitrary initial condition using a distributed controlier, We will restrict
attention to the force actuation case, and we will assume uniform cross section properties. The

formulaton is analogous to the discrete case, for which the optimal cost is expressed by

7= %ngxo ®.1)

where X is the initial condition on the state vector and S is the Riccati matrix. Wang (1964)

shows that, for the distributed case, the optimal cost has the form

- 1
r =1 d[ojxo(x)TS(x,y)xo(y) dxdy Oz

where x(x) is the distributed initial condition and S(x,y) is the Riccad matrix function associated

with Eq. (6 19). Thus, for the case of an inital displacement, vy(x)=sin(27x), the opiimal cost is

11
1 2 32
=34 Z5vot0) $1106,y) Z5voly) dx dy

11
= gt ostin(zxx) Sy,(x,y) sin2ny) dx dy ®23)

The Riccati equations for Sy;(x,y) follow directly from Eq. (6.25). For constant section

propertics, they are given by
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2 2 . A .
Ea;fsu(x»)') - a%z'szz(xv, -2 J S22(%,2)3y(2,y) 8z = 4
S SE I R NS X N -

oo

2 2 . ] . .
-GSty + g;—zs,,(x,y) -1 OJ‘ s,z(x.z)s,z(z,y) dz = 0 (D.4b)

Adding these two equations yields

V2 Snxy) = V25,(xy) + of [822(x 2)Sy2(z,y) + 8p4(x, z)Szz(z,y)] az  (D.5)

Thus, 8y, is computed using a simple relaxation algorithm. For the case of an inidal velocity,

Vo(x)=8(x- ~1/2), which is equivalent to a center-span impulse, the cost is simply

g7 f f Yo(x) Saa(x.y) Vo) dx dy = Ls,002,1) @.6)
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